Spiral-Encoded Illumination for Robust Phase-Amplitude Recovery in Fourier Ptychographic Microscopy
DOI:
https://doi.org/10.6919/ICJE.202506_11(6).0018Keywords:
Fourier Ptychographic Microscopy; Spiral Illumination; Phase Retrieval; Gerchberg–Saxton Algorithm; Frequency-Domain Reconstruction; Computational Imaging; Error Feedback.Abstract
Fourier Ptychographic Microscopy (FPM) is a computational imaging technique that reconstructs high-resolution phase and amplitude images from low-resolution intensity measurements. This study presents a robust FPM reconstruction framework based on spiral-encoded LED illumination and an iterative Gerchberg–Saxton algorithm with frequency-domain error feedback. A complex object combining amplitude and phase components is synthesized to simulate realistic samples. A total of 255 low-resolution images are generated using a 15×15 spiral LED array. The reconstruction iteratively updates the object’s spectrum with amplitude constraints guided by phase retrieval error. Experimental results show that the proposed method achieves a PSNR of 37.33 dB and SSIM of 0.9848 for amplitude, and a PSNR of 24.18 dB and SSIM of 0.9384 for phase, demonstrating its effectiveness for high-fidelity phase-amplitude recovery in FPM.
Downloads
References
[1] Zhang J, Xu T, Zhang J, Chen Y, Li J. Cross-level channel attention network for Fourier ptychographic microscopy reconstruction[J]. IEEE Photonics Journal, 2021, 14: 1–8.
[2] Sun M, Shao L, Zhu Y, Wang H, Liu Q. Double-flow convolutional neural network for rapid large field of view Fourier ptychographic reconstruction[J]. Journal of Biophotonics, 2021, 14(5): e202000444.
[3] Chen Q, Huang D, Chen R. Fourier ptychographic microscopy with untrained deep neural network priors[J]. Optics Express, 2022, 30(25): 39597–39612.
[4] Zhou G, Zhang S, Hu Y, Zhang J. Fast color Fourier ptychographic microscopy based on spatial filtering frequency fusion[J]. Optics and Laser Technology, 2024, 159: 108002.
[5] Wang Y, Wang Y, Li J, Wang X. Fourier ptychographic microscopy reconstruction method based on residual local mixture network[J]. Sensors, 2024, 24(13): 4099.
[6] Shu Y, Sun J, Lyu J, Jiang Y. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy[J]. PhotoniX, 2022, 3: 24.
[7] Zhou G, Zhang S, Hu Y, Yu Y. Fast digital refocusing in Fourier ptychographic microscopy based on defocus-distance regression network[J]. Optics Express, 2023, 31(1): 339–352.
[8] Liu H, Xu T, Chen Y, Liang Y. Transformed pupil-function misalignment calibration strategy for Fourier ptychographic microscopy[J]. Optics Express, 2024, 32(7): 11429–11446.
[9] Chen Y, Xu J, Pan A. Depth-of-field extended Fourier ptychographic microscopy without defocus distance priori[J]. Optics Letters, 2024, 49(11): 3222–3225.
[10] Feng T, Wang A, Wang Z, Sun M. Linear-space-variant model for Fourier ptychographic microscopy[J]. Optics Letters, 2024, 49(10): 2617–2620.
[11] Zhou G, Zhang S, Hu Y, Zhao C. Fast full-color pathological imaging using Fourier ptychographic microscopy via spatial filtering frequency fusion[J]. Advanced Photonics Nexus, 2025, 4(2): 026001.
[12] Zhang S, Berendschot T T J M, Zhou J. ELFPIE: an error-laxity Fourier ptychographic iterative engine[J]. arXiv preprint arXiv:2209.14671, 2022.
[13] Li H, Wei X, Liu Y, Wu Q. Fourier ptychographic microscopy based on spatial attention residual network for high-fidelity reconstruction[J]. Optics Express, 2022, 30(3): 3558–3573.
[14] Xie Z, He X, Sun X, Zhao Y. Spectral attention network for robust Fourier ptychographic reconstruction under noise[J]. Biomedical Optics Express, 2023, 14(1): 140–157.
[15] Wang J, Yuan S, Li K, Chen C. Deep learning-based denoising framework for Fourier ptychographic microscopy under low exposure conditions[J]. Journal of Biomedical Optics, 2022, 27(4): 046001.
[16] Huang D, Chen Q, Shen Y, Wang X. Physics-informed generative adversarial networks for super-resolution phase reconstruction in Fourier ptychographic microscopy[J]. Optics Communications, 2023, 532: 129161.
[17] Tang Z, Ye H, Han Q, Liu S. Fourier ptychographic imaging using frequency-enhanced neural networks[J]. Journal of Microscopy, 2023, 290(1): 14–25.
[18] Xu L, Zhang Y, Wang Z, Liu C. Fourier ptychographic microscopy based on image quality-aware adaptive data acquisition strategy[J]. Applied Optics, 2022, 61(23): 6815–6823.
[19] Jin L, Gao C, Li P, Liu Y. Fourier ptychographic imaging with a physical-model-constrained transformer network[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1–10.
[20] Wang X, Sun J, Yang C, Zhao X. LED array misalignment calibration for Fourier ptychographic microscopy using simulated annealing optimization[J]. Applied Sciences, 2021, 11(14): 6542.
[21] Wang H, Tan Y, Liu J. Compressive Fourier ptychographic imaging with multi-scale adaptive frequency fusion[J]. Optical and Quantum Electronics, 2021, 53(11): 679.
[22] Qiu H, Zhang M, Wang F. Wide-field super-resolution phase imaging by deep neural networks in Fourier ptychographic microscopy[J]. Scientific Reports, 2021, 11: 15567.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Core Journal of Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.