The Enumeration Formula of Standard Young Tableaux for Approximate Right Triangles

Authors

  • Qiuying Li
  • Jianxia Bai
  • Kaifang Zhao
  • Qingyun Zheng
  • Yijie Song

DOI:

https://doi.org/10.6919/ICJE.202506_11(6).0017

Keywords:

Standard Young Tableaux; Hollow Shifted Shapes; Multiple Integral; Catalan Number.

Abstract

The correspondence between nested order statistics and standard Young tableaux reveals a profound link between probability theory and combinatorics. By interpreting standard Young tableaux as nested order statistics constructions, the enumeration problem transforms into computing multiple integrals over simplex domains constrained by nested order statistics. This probabilistic-combinatorial duality enables analytical techniques from integral geometry to estimate standard Young tableaux counts. Otherwise, we combine with the combinatorial identity, the general summation representation of hollow shifted standard Young tableaux with approximately right-angled trapezoids is given, thus verifying the conjecture in the literature.

Downloads

Download data is not yet available.

References

[1] W.S.Qiu .Group Representation Theory, (Higher Education Press, Beijing, 2011).(in Chinese))

[2] J.S.Frame, G. de B.Robinson, R.M.Thrall. The Hook Graphs of the Symmetric Group[J]. Can. J. Math., 6, 317-324 (1954).

[3] G.D.James, M.H.Peel. Specht series for skew representations of symmetric groups[J]. J. Algebra, 56(2), 343–364(1979).

[4] R.M.Adin, Y. Roichman. Triangle-free triangulations, hyperplane arrangements and shifted tableaux[J]. Electron. J. Comb., 19 (3), PP32(2012).

[5] R.M. Adin, R.C.King, Y.Roichman. Enumeration of standard Young tableaux of certain truncated shapes[J]. Electron. J. Comb., 18 (2), P20(2011).

[6] G. Panova. Tableaux and plane partitions of truncated shapes[J]. Adv. Appl. Math., 49 ,196–217(2012).

[7] P. Sun. Evaluating the numbers of some skew standard Young tableaux of truncated shapes[J]. Electron. J. Comb., 22 (1), P1.2(2015).

[8] P. Sun. Note of the Enumeration Formula of Standard Young Tableaux of Truncated Shape [J]. Eur. J. Comb., 46, 126-133(2015).

[9] P. Sun. Enumeration of standard Young tableaux of shifted strips with constant width [J]. Electron. J. Comb., 24(2), (2017).

[10] Q.Y.Li, J.X.Bai, Counting of Two Classes of Hollow Ladder-Shaped Standard Young Tableaux [J]. Journal of Yunnan Normal University (Natural Science Edition), 43(5), 29-35(2023). (in Chinese)

[11] Q.Y.Li, F.F.Li. Enumeration formulas for standard young tableaux of approximate C shape[J]. J. Phys.: Conf. Ser., 1987(1), (2021).

[12] A.Young. What is a Young Tableau? [J]. Not. Am. Math. Soc., 54(2), 240-241 (2007).

[13] R.M.Adin, S.Elizalde, Y.Roichman. Cyclic descents for near-hook and two-row shapes[J]. Eur. J. Comb., 79, 152-178(2019).

[14] P. Sun.Enumeration formulas for standard Yong tableaux of nearly hollow rectangular shapes[J]. Discrete Math., 341, 1144-1149(2018).

[15] Gil B J, McNamara W R P, Tirrell O J, et al. From Dyck Paths to Standard Young Tableaux[J]. Ann. Comb., 24(1), 69-93(2020).

[16] S.E.B, Z.Doron .Experimenting with Standard Young Tableaux[J]. Math. Comput. Sci., 18(2) (2024)

[17] N.J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

Downloads

Published

2025-05-28

Issue

Section

Articles

How to Cite

Li, Q., Bai, J., Zhao, K., Zheng, Q., & Song, Y. (2025). The Enumeration Formula of Standard Young Tableaux for Approximate Right Triangles. International Core Journal of Engineering, 11(6), 150-157. https://doi.org/10.6919/ICJE.202506_11(6).0017