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Abstract 
Floor planning is a foundational step in the physical design of very-large-scale 
integration (VLSI) circuits, directly influencing chip area utilization, interconnect length, 
and overall performance. Owing to the NP-hard nature of both two-dimensional (2D) and 
three-dimensional (3D) floor planning problems, exact optimization methods become 
computationally prohibitive as design complexity increases. This paper provides a 
comprehensive survey of two major solution paradigms: classical meta-heuristic 
algorithms and modern reinforcement learning techniques. We first review widely 
adopted meta-heuristics-including simulated annealing, genetic algorithms, particle 
swarm optimization, and ant colony optimization-highlighting their operational 
principles, strengths in global search, and practical challenges related to parameter 
tuning and convergence. Next, we explore reinforcement learning frameworks that cast 
floor planning as a sequential decision-making task, with deep reinforcement learning 
agents capable of learning placement policies in high-dimensional spaces. Comparative 
analysis reveals that while meta-heuristics excel in adaptability and ease of 
implementation, reinforcement learning offers potential for automated, data-driven 
optimization with reduced manual intervention. Finally, we discuss emerging hybrid 
approaches that integrate meta-heuristic exploration with learned policy refinement, 
pointing toward future research directions aimed at achieving efficient, high-quality 
layouts for next-generation VLSI designs. 
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1. Introduction 

Floor planning is a critical step in the physical design of very-large-scale integration (VLSI) circuits, 
directly impacting chip area, wirelength, and overall performance [1] [8]. As technology scales and 
design complexity grows, both two-dimensional (2D) and three-dimensional (3D) floor planning 
problems have become increasingly challenging [2]. These problems are known to be NP-hard [13], 
meaning that finding exact optimal solutions within reasonable time bounds is infeasible for large-
scale instances. Consequently, researchers have turned to approximate methods-particularly meta-
heuristic algorithms-to navigate the vast solution space and produce high-quality layouts in a practical 
timeframe . 

Meta-heuristic approaches such as simulated annealing, genetic algorithms, particle swarm 
optimization, and ant colony optimization have demonstrated strong global search capabilities and 
adaptability across diverse optimization landscapes. Simulated annealing, one of the earliest 
techniques applied to VLSI floor planning, mimics the physical process of cooling to escape local 
optima, while genetic algorithms leverage evolutionary principles of selection, crossover, and 
mutation to evolve populations of candidate solutions. Particle swarm and ant colony methods, 
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inspired by social behaviors in nature, further enrich the toolkit by balancing exploration and 
exploitation through collective intelligence mechanisms. 

Meanwhile, the advent of reinforcement learning (RL) has opened new avenues for automated layout 
design. By framing floor planning as a sequential decision-making problem, RL agents can learn 
placement strategies through trial-and-error interactions with a simulated environment. Deep 
reinforcement learning, in particular, combines the representational power of neural networks with 
the trial-based optimization of RL, enabling the handling of high-dimensional state and action spaces 
inherent in modern VLSI design. This survey explores both classical meta-heuristic algorithms and 
contemporary reinforcement learning techniques, comparing their strengths, limitations, and potential 
synergies for future research in floor planning. 

2. Meta-heuristic Algorithms 

Because the floor planning problems of both 2D integrated circuits and 3D integrated circuits are NP-
hard problems [8], researchers usually use meta-heuristic algorithms, such as simulated annealing 
algorithm, to solve the floor planning problem. Next, we will introduce some commonly used meta-
heuristic algorithms in floor planning problem. 

2.1 Simulated Annealing Algorithm 

Simulated Annealing (SA) algorithm is one of the earliest and most popular algorithms used in 
various stages of VLSI physical design [15]. The floor planning algorithm based on simulated 
annealing is easy to implement. Many researchers have achieved good results in floor planning 
problems by combining sequence pairs, cornea block sequences, B * -tree and other floor planning 
representation methods. 

The core idea of simulated annealing algorithm is to gradually reduce the energy of the system by 
simulating the solid heat annealing process, in order to expect to find a better solution in the search 
space. The algorithm simulates the process of solid matter from high temperature to low temperature, 
allowing large oscillations and accepting the probability of inferior solutions at high temperatures, 
and reducing the amplitude of oscillations and the probability of accepting inferior solutions at low 
temperatures. 

The specific steps of the simulated annealing algorithm are as follows: 

Step one: Initialization. At the beginning of the algorithm, set the initial temperature as the starting 
point of annealing, and randomly set an initial solution as the current solution. 

Step two: generate a neighborhood solution by perturbation, and then in each step, generate a 
neighborhood solution by applying a random perturbation to the current solution, and calculate the 
corresponding objective function value. 

Step three: Sample neighborhood solutions according to the Metropolis rule. If the objective function 
value of the neighborhood solution is better, that is, closer to the optimal solution, then the 
neighborhood solution is taken as the current solution; if the objective function value of the current 
solution is better, then the probability of accepting the neighborhood solution is calculated according 
to the Metropolis rule, and whether to accept the neighborhood solution as the current solution is 
determined according to the probability [3]. The probability calculation formula is as follows: 
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where f(s) is the objective function, tk is the temperature of the kth iteration, and s and s′ are the 
current solution and neighborhood solution, respectively. 

if f(s’) ≤ f(s) 

if f(s’) ＞ f(s) 
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Step four: Temperature update, gradually reduce the temperature according to the preset cooling 
schedule. Common cooling methods include linear cooling and exponential cooling. 

Step five: Iterative repetition, repeat steps two to four until the temperature drops to the set 
termination temperature. At each iteration, an attempt is made to find a better solution in the search 
space, and as the temperature decreases, the probability of accepting a worse solution decreases 
gradually. 

Simulated annealing algorithm is widely used in optimization problems in many fields, it has better 
global search ability and adaptability, and has certain advantages in solving complex problems and 
non-convex problems. The key lies in the probability of accepting inferior solutions and the setting 
of temperature, reasonable configuration can balance the ability of global search and local search, 
avoid falling into local optimal solution. In addition, the convergence speed of the algorithm is also 
related to the characteristics of the problem itself, so it is necessary to carefully adjust the parameters 
in practical applications to obtain better results. 

2.2 Genetic Algorithms 

Genetic Algorithm (GA) is a population-based evolutionary optimization technique inspired by the 
principles of natural selection and genetic inheritance. It operates on a population of candidate 
solutions, represented as chromosomes, and evolves them over successive generations through 
biologically-inspired operations such as selection, crossover, and mutation. Each individual in the 
population encodes a potential solution to the optimization problem and is evaluated using a fitness 
function that quantifies its performance with respect to the objective. Individuals with higher fitness 
are more likely to be selected for reproduction, thereby propagating advantageous traits to subsequent 
generations [4]. The crossover operation recombines genetic information from pairs of selected 
parents to produce offspring with potentially superior characteristics [9], while mutation introduces 
random alterations to maintain genetic diversity and avoid premature convergence. Over iterative 
updates, the population evolves toward increasingly optimal regions of the solution space. GA is well-
regarded for its global search capability, robustness, and parallelism, making it effective in tackling 
high-dimensional and multimodal optimization problems. However, its performance is highly 
dependent on parameter settings-such as population size, mutation rate, and crossover probability-as 
well as the encoding and fitness evaluation strategies. Consequently, careful calibration and adaptive 
control of parameters are often required to ensure convergence efficiency and solution quality in 
practical applications. 

2.3 Particle Swarm Optimization Algorithms 

Particle Swarm Optimization (PSO) is a heuristic optimization algorithm that simulates the behavior 
of bird flocks or animal swarms. In the particle swarm algorithm, each individual is called a particle, 
and these particles form a population. The particle swarm optimization algorithm starts from random 
examples, and each example flies in the solution space at a certain speed and is updated based on its 
own and its neighbor's experience. The execution process of the particle swarm optimization 
algorithm is as follows: 

Step one: Initialize the particle swarm by randomly generating a set of initial positions and velocities 
for the particles. The initial position of each particle represents a candidate solution, and the velocity 
determines the direction and distance of the particle's movement. 

Step two: Evaluate the fitness of each example. Evaluate the fitness of each particle based on the 
specific objective function of the problem. The fitness value represents the quality of the particle's 
solution. 

Step three: Update the velocity and position of each particle. Each example updates its velocity and 
position based on its own historical best position, which is the local optimal solution, and the historical 
best position of the entire population, which is the global optimal solution (Fbest), as well as some 
random factors. The update formula is as follows: 
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where w is the inertia weight, c1 and c2 are the learning factors of individuals and groups, and r1 and 
r2 are random numbers between [0,1]. 

Step four: Update the global optimal solution, compare the fitness of each example, and update the 
global optimal solution of the population. 

Step 5: Repeat iterations, repeating steps 2 through 4 until the stopping criteria are met, such as 
reaching a predetermined number of iterations or finding a satisfactory fitness solution. 

The key in the particle swarm optimization algorithm is the velocity update and position update of 
the particles. Velocity update involves the particle's retention of its own historical optimal solution 
and its attraction to the global optimal solution, and balances individuality and collectivity by 
introducing self-experience terms and global experience terms into velocity. Position update updates 
the position of particles in solution space based on the new velocity value.  

The advantage of the particle swarm optimization algorithm lies in its simplicity and ease of 
implementation, which can perform a fast global search in the solution space and has strong 
convergence and adaptability [6]. However, there are also some challenges in the particle swarm 
optimization algorithm, such as the difficulty of falling into the local optimal solution and the 
sensitivity of parameter setting, so it is necessary to carefully select and adjust the algorithm 
parameters in practical applications. 

2.4 Ant Colony Optimization Algorithms 

Ant Colony Optimization (ACO) is a nature-inspired meta-heuristic algorithm that emulates the 
pheromone-mediated foraging behavior of ants to solve complex combinatorial optimization 
problems. In ACO, the solution space is conceptualized as a graph in which artificial ants iteratively 
construct candidate solutions by traversing nodes based on a probabilistic transition rule. This rule is 
governed by two main factors: the intensity of pheromones deposited on paths, which encodes the 
collective experience of the colony, and problem-specific heuristic information, which guides ants 
toward locally promising regions. During each iteration, ants explore the solution space 
independently and release pheromones along their paths. These pheromones undergo dynamic 
updates—subject to evaporation to prevent convergence stagnation and reinforcement on high-quality 
paths to bias future exploration. Through repeated interactions, the algorithm promotes convergence 
toward optimal or near-optimal solutions as paths with higher pheromone concentrations become 
increasingly attractive to the ant population. ACO has demonstrated robust performance in solving 
NP-hard problems such as the Traveling Salesman Problem (TSP), benefitting from its inherent 
parallelism, adaptability, and global search capability. However, the algorithm's efficacy is sensitive 
to parameter settings, including evaporation rate, pheromone influence, and heuristic weighting, and 
may exhibit slow convergence or premature stagnation if improperly configured [7]. Therefore, 
successful deployment of ACO in practice often necessitates careful parameter tuning and, in many 
cases, hybridization with local search techniques to enhance convergence stability and solution 
quality. 

3. Reinforcement Learning 

3.1 Introduction to Reinforcement Learning 

Reinforcement learning (RL) has emerged as a prominent machine learning paradigm alongside the 
rapid advancement of artificial intelligence. At its core, RL is an interactive learning framework 
composed of four main elements: agent, environment, action, and reward. The agent interacts with 
the environment by taking actions, receives feedback in the form of rewards, and adjusts its strategy 
accordingly through trial-and-error to maximize long-term gains. The ultimate goal is to enable 
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autonomous agents to learn optimal behaviors and improve performance through continuous 
interaction with their surroundings. 

One of the long-standing objectives in AI is to develop fully autonomous systems capable of adaptive 
learning in dynamic environments. RL provides a mathematical foundation for such self-directed, 
experience-driven learning. While traditional RL methods have shown success in various domains, 
they often struggle with scalability and are limited to low-dimensional tasks due to challenges such 
as high memory, computational, and sample complexity. 

The rise of deep learning has significantly enhanced RL by introducing powerful function 
approximation through deep neural networks. Deep learning facilitates automatic feature extraction 
from high-dimensional inputs such as images, text, and audio, effectively addressing the "curse of 
dimensionality" through hierarchical and inductive representations. The integration of these 
capabilities has led to the emergence of deep reinforcement learning (DRL), a field that combines the 
strengths of both frameworks to tackle more complex and high-dimensional decision-making 
problems. 

3.2 Markov Decision-making Process 

Reinforcement learning can be described as MDP. MDP can be expressed by (S, A, P, R, γ):  

1) State space (𝑆): A set of possible environment states. 

2) Action space (𝐴): The actions that a set of agents can take. 

3) State transition probability (𝑃): indicates the probability that the state 𝑠 changes to 𝑠 'when the 
agent performs the action 𝑎. 

4) Reward (𝑅): A reward signal for environmental feedback. 

5) Discount factor (𝛾): discount factor. 

MDP is usually based on the Markov hypothesis, so the probability distribution of future states 
depends only on the current state, i.e [14]. the past sequence of states does not affect the environment. 
Figure 2.16 shows the interaction process between the agent and the environment. At 𝑡, the agent 
observes the state 𝑠𝑡 from the environment and interacts with the environment by taking action 𝑎𝑡. 
When the agent takes action, based on the current state 𝑠𝑡 and action 𝑎𝑡, the environment rewards the 
agent 𝑟𝑡 as feedback. Move to a new state 𝑠𝑡+1. In episodic tasks, this process continues until the 
agent reaches the termination state, and then the state is reset. Discount cumulative returns are defined 
as follows: 
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Where 𝛾𝜖(0,1) represents the discount factor and 𝑘 represents the time step. The goal of reinforcement 
learning is to maximize the expected return from each state. 

 

 
Figure 1. The interaction process between the agent and the environment 



International Core Journal of Engineering Volume 11 Issue 6, 2025
ISSN: 2414-1895 DOI: 10.6919/ICJE.202506_11(6).0050

 

467 

3.3 Value Function 

Value function Value function is an index used by reinforcement learning to evaluate the expected 
return, including state value function and action value function. The state value function 𝑉𝜋(𝑠) 
represents the expected return of the state 𝑠 obtained by the strategy 𝜋, which can be used to evaluate 
the status of the agent. The definition is as follows:  

 

   sSGEsV tt                           (4) 

 

The 𝑉𝜋(𝑠) equation is recursively obtained: 

 

    1 ttt sVrEsV                                (5) 

 

The optimal state-value function 𝑉* (𝑠) = max𝜋𝑉𝜋 (𝑠) = max𝑎𝑄* (𝑠, 𝑎) represents the maximum state 
value achievable under any policy for state 𝑠. 𝑉* (𝑠) can be obtained through a recursive approach, 
yielding its Bellman equation: 
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The action-value function 𝑄𝜋(𝑠, 𝑎) represents the expected return obtained by executing action 𝑎 in 
state 𝑠 under policy 𝜋, which can be used to estimate the goodness or badness of the corresponding 
actions of the intelligent agent in this state, defined as follows: 
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Obtain its Bellman equation through recursive means for 𝑄𝜋(𝑠, 𝑎): 
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The optimal action-value function 𝑄*(𝑠, 𝑎) = max𝜋𝑄𝜋(𝑠, 𝑎) represents the maximum action value 
that can be obtained by executing action 𝑎 in state 𝑠 under any policy, and 𝑄* (𝑠, 𝑎) is obtained 
recursively by its Bellman equation: 
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3.4 Temporal Difference Method 

The solution methods for reinforcement learning include methods based on dynamic programming, 
Monte Carlo methods, and temporal difference methods. Temporal difference (TD) is the core of 
reinforcement learning, which uses differences over time steps for learning and updating. Traditional 
reinforcement learning algorithms such as the SARSA algorithm and the Q-learning algorithm are 
both based on temporal difference learning [10]. 

Temporal difference learning learns the state value function 𝑉(𝑠) based on the TD error, with the 
update rule as follows: 
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        tttt sVsVrsVsV  1                     (10) 

 

Here, 𝛼 represents the learning rate, and 𝑟 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) is the TD error. Temporal difference 
methods employ bootstrapping, meaning that the update of the value function depends on the value 
of the current action or state and the value of the next action or state. Temporal difference methods 
form the basis for both the SARSA algorithm and the Q-learning algorithm. The SARSA algorithm 
is a policy (on-policy) algorithm that updates the action values using actions sampled from the current 
policy. Its update mechanism can be defined by the equation: 
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Q-learning is a model-free algorithm that uses a Q-table to store state-action values and selects the 
action that yields the maximum reward in the environment. Its update can be defined by the equation: 
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3.5 DNQ 

Deep Reinforcement Learning (DRL) is a technique that combines Deep Learning with 
Reinforcement Learning. It enables the handling of complex problems with high-dimensional state 
and action spaces by utilizing deep neural networks [11]. 

In Deep Reinforcement Learning, the agent employs a deep neural network as a value function 
approximator or policy approximator to learn strategies that make optimal decisions in a given 
environment. The multi-layer architecture of deep neural networks provides powerful function 
approximation capabilities, allowing the agent to autonomously extract and learn useful features from 
raw or high-dimensional inputs. 

DQN (Deep Q-network; Deep Q Network) is a core algorithm of deep reinforcement learning, which 
combines the reinforcement learning algorithm Q-Learning with deep neural network models to 
achieve learning and decision-making in complex environments. DQN solves the problem of unstable 
learning by employing techniques such as experience replay and target networks to stabilize the 
learning process. 

The experience replay mechanism stores each step of experience in the form of a quadruplet (st, at, 
rt+1, st+1) into the experience pool [12]. During training, it uses uniformly randomly sampled 
experience samples instead of continuously training with samples generated in real-time, reducing 
the correlation of samples during the training process and enhancing the stability of training. At the 
same time, experience samples can be resampled multiple times for training, improving the efficiency 
of data utilization. 

The target network is another key technology used by DQN. DQN employs two neural networks for 
learning, namely the evaluate network and the target networ [13]. The evaluate network is responsible 
for selecting actions based on the current state and estimating the Q-value of actions; its parameters 
are updated in each training step. The target network is used to compute the target Q-value, and its 
network architecture is identical to that of the evaluate network, with its parameters updated by 
periodically copying those of the evaluate network. For each set of samples drawn from the 
experience pool, the evaluate network computes the Q-value of the current state, while the target 
network computes the maximum Q-value of the next state. The TD error is calculated to update the 
weights of the evaluate network. Since the parameters of the target network do not change frequently, 
the estimated target Q-value does not fluctuate dramatically. This helps to reduce instability during 
the training process, making the network more likely to converge. The evaluate network is used to 
predict the Q-value of each action in the current state, while the target network is used to compute 
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the target Q-value. By separating the target network from the online network, the problem of self-
influence during the update of target values is avoided. 

DQN approximates the optimal action-value function 𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄* (𝑠, 𝑎) using a neural network, 
where 𝜃 represents the parameters of the neural network. The loss function is defined based on the 
Bellman equation: 

 

               2

1
''2

~, ;,;,max;, '   asQasQrEasQyEL iaiasi              (13) 

 

Where 𝜌(∙) is the probability distribution with respect to the state 𝑠 and action 𝑎, and 𝑦𝑖 is the TD 
target. The model is updated using the backpropagation algorithm. 

4. Conclusion 

This survey has examined two principal strategies for addressing the NP‑hard VLSI floor‑planning 
problem: classical meta‑heuristic algorithms and modern reinforcement‑learning methods. 
Meta‑heuristics-such as simulated annealing, genetic algorithms, particle‑swarm optimization, and 
ant‑colony optimization-offer robust global search capabilities and have been widely adopted due to 
their flexibility and ease of implementation. Deep reinforcement learning reframes floor planning as 
a sequential decision task, enabling automated policy learning in high‑dimensional design spaces [5]. 
While meta‑heuristics excel in reliability and require relatively modest computational resources, 
reinforcement learning promises reduced manual tuning and the potential to adapt dynamically to 
new design rules. Future research should explore hybrid frameworks that combine the exploratory 
power of meta‑heuristics with the adaptive learning strengths of reinforcement learning, aiming to 
deliver efficient, high‑quality layouts for increasingly complex VLSI technologies. 
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