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Abstract 
The correspondence between nested order statistics and standard Young tableaux 
reveals a profound link between probability theory and combinatorics. By interpreting 
standard Young tableaux as nested order statistics constructions, the enumeration 
problem transforms into computing multiple integrals over simplex domains 
constrained by nested order statistics. This probabilistic-combinatorial duality enables 
analytical techniques from integral geometry to estimate standard Young tableaux 
counts. Otherwise, we combine with the combinatorial identity, the general summation 
representation of hollow shifted standard Young tableaux with approximately right-
angled trapezoids is given, thus verifying the conjecture in the literature. 
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1. Introduction 

Standard Young tableaux (SYT) have a wide range of applications in geometry as well as in 
substitution groups of abstract algebra and irreducible representations of general linear groups [1-2]. 
Many scholars have studied the counting of different standard Young tableaux with different methods. 
Recent combinatorial investigations have focused on the enumeration of truncated hollow standard 
Young tableaux (SYTs). The foundational framework for truncated SYTs was first established by G. 
D. James and M. H. Peel [3], who introduced the geometric construction and pivotal combinatorial 
properties. Building on this work, subsequent research in [4] proposed a novel algebraic interpretation 
of truncated SYTs through representation-theoretic methods, resolving key conjectures in the field. 
R.M. Adin and Y. Roichman systematically investigated the enumeration of standard Young tableaux 
(SYTs) with northeastern corner truncations [5]. Building upon this geometric configuration analysis, 
Adin et al. established a combinatorial framework employing pivoting theory to derive closed-form 
expressions for square-truncated rectangular and shifted staircase-shaped SYTs, with particular 
emphasis on near-square truncation patterns. G. Panova [6] established explicit formulas for square-
truncated rectangular Young diagrams with staircase approximations through Schur function 
decompositions in symmetric function theory. Building on this algebraic combinatorial framework, 
P. Sun and Li [7-11] developed a probabilistic-analytic framework demonstrating that SYT 
enumerations for both regular and shifted truncated shapes emerge as specializations of nested 
sequence statistic distributions (see Theorem 3.2 in [7]), thereby establishing systematic connections 
between tableau enumeration and permutation pattern analysis. 

A partition  [12] of a positive integer n is defined as a weakly decreasing 

sequence  1 , , d     where 1 dn     . The associated Young diagram, a canonical visual 

representation of λ, consists of left-justified rows of boxes with i boxes in the i-th row (indexed top-
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to-bottom). Here j denotes the conjugate partition specifying j boxes in the j-th column (indexed 
left-to-right). 

In [13], Adin and Roichman rigorously characterized standard Young tableaux (SYTs) as bijective 

labelings of Young diagrams where  1,2, ,n entries strictly increase along rows (left-to-right) and 
columns (top-to-bottom). This combinatorial construct extends the classical hook-length formula – 
the seminal enumerative result for SYT counts – through innovative geometric-algebraic 
correspondence techniques applied to tableau configurations. A SYT of rectangular shape is denoted 

by ( , , )mn n n n   and It is clear that the SYT of truncated shapes can be represented by \   or 
/   , namely , ,    are partitions of positive integers. Instead of deleting i  cells from the end 

of row i , a truncated shape \   is a left-justified array of cells which belong to   rather than 

and the shape /   is the cells which belong to   rather than  when cells in the upper left corners 
are kicked out [7].  

The SYT of a hollow truncated shape is denoted by 0 0\ | {( , )}i j    that the diagram of shape   

deletes the cells belonging to shape   from 0 0( , )i j , while the cells of  in the upper left corners 

are deleted in row 0i  and column 0j  of  . The SYT of truncated shape 0 0\ | {( , )}i j   is filled by 

a corresponding truncated diagram with the integers from 1 to | | | |    so that each row and 
column is increasing in [14]. 

For example, 2 ( ), ( 2)n H n    is denoted as Figure 1. 

 

 

Fig.1 SYT of the 2( ),( 2)n H n   shape 

 

P. Sun [14] established recursive formulae for SYT counts on nearly hollow rectangular diagrams 
while formalizing axiomatic definitions of hollow SYTs. Contemporary research extends this 
paradigm to exotic diagram topologies – polygonal and alphabetic Young diagrams have emerged as 
active frontiers. Specifically, Standard Young Tableaux have new progress in Dyck path and 
experimenting[15-16]. Building upon this progression, we derive enumeration formulae for 
Approximate Right Triangles as Fig. 1. 

In this paper, the counting problem of standard Young tableaux is transformed into a multiple 
integration problem on the corresponding nested order statistics[7],Through the calculation of 

multiple integrals on the distribution (0,1)U  of nested order statistics, the number of standard Young 
tableaux of  shape is obtained as 

 

 11, ,| | ! ( ) | | 1
d dS

H Vol S dx dz


         ！                       (1) 

 

Where ( )Vol S  is the volume of the nested simplex S corresponding to the standard Young tableaux 
of type  ,i.e., the domain of integration. 



International Core Journal of Engineering Volume 11 Issue 6, 2025
ISSN: 2414-1895 DOI: 10.6919/ICJE.202506_11(6).0017

 

152 

2. Main Results 

In this paper, according to the correspondence between standard Young tableaux and nested order 
statistics, we mainly focus on transforming the counting problem of standard Young tableaux into a 
multiple integration problem on the model of nested order statistics. This section focuses on the 
precise enumeration of standard Young tableaux of shape 2 ( ), ( 2)n H n    (as shown in Figure 1) 
through the partitioning and analysis of nested simplex. By leveraging computational methods from 
[7], we rigorously calculate the combinatorial count of such tableaux, simplify the results using 
relevant combinatorial identities, and ultimately derive a closed-form enumeration formula. This 
resolves the conjecture proposed in [14], thereby confirming its validity. 

Theorem 1. The enumeration formula for standard Young tableaux of shape 2 ( ), ( 2)n H n    is  

 

 2

2
( ),( 2)

(3 1)!
( 3 6)

!(2 3)!n H n

n
H n n

n n  


  

                           (2) 

 

The result of this counting formula is the Catalan number 6th convolution [17.A143388]. 

As n varies ,the numbers of SYT-type charts of 2 ( ), ( 2)n H n    shape are listed as follows: 

 

Table 1. SYT-type chart counts for shape 2 ( ),( 2)n H n    

n  1 2 3 4 5 6 7 8 …… 

2 ( ),( 2)n H nH    1 2 8 40 221 1288 7752 47652 …… 

 

Proof. From Lemma 1, the counting formula for the standard Young tableaux of this shape should be 

 

 2 ( ),( 2) (3 3)! (3 3)!
n

n
H n n r r rD

H n I n dx dy dt                               (3) 

 

where the integral range nD  represents the nested simplex corresponding to the standard Young 
tableaux of shape 2 ( ), ( 2)n H n   , and the variables must satisfy the strictly increasing from left to right 
and from top to bottom in each row and column, respectively. that is 
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
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                                      < 

                                           

        

n ny t

 

 



 

                                     1t

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

    
 

The integration domain here is relatively complex and requires detailed analysis. The specific steps 
and rationale are as follows: 
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Step 1: Deformation analysis of SYT-type charts of 2 ( ), ( 2)n H n    shape  

We first discuss the possible values of the variable x . There are n+1 distinct cases: 
1 , ( 2,3, , )j jy x y j n     , 1nx x y  and 1ny x t  . Consequently, SYT-type charts of type 2 ( ),n H 

( 2)n   are partitioned into three groups for systematic analysis. 

Step 2: Integral computations for each group. 

For each group of SYT-type charts, we perform combinatorial integration to derive their respective 
enumeration formulas. By leveraging the equivalence between pre- and post-deformation counting 
problems, we simplify the computation to enumerating only the deformed Young tableaux. Critical 
intermediate results from relevant lemmas are invoked during this process. 

Step 3: Summation and simplification. 

The results from the three groups are aggregated. Utilizing combinatorial identities, we unify the 
piecewise expressions into a closed-form formula for the number of SYT-type charts of 
type 2 ( ), ( 2)n H n   . 

Thus, the original domain nD  is decomposed into three components 1 2 3( ), ,D j D D  for multivariate 
integral computations. 

 

0 1 1

1 1

0

                                       

                                             

                                                                      

j j n

j j n

x x x x x

y y x y y




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1( ), 2 ,D j j n   
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1 2

 0    <      
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
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Let 

 

 1 2 3
2

( )
n

n
j

I I j I I


   ,                              (4) 

 

Included among these 

 

1
1 ( )
( ) r r rD j

I j dx dy dt   , 

2
2 r r rD
I dx dy dt   , 

3
3 r r rD
I dx dy dt   . 
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when 2 j n  is calculated by integrating 

 

 
*

1

1 1
1

1 0

( ) ( )
( ) ,

( 1)! ( 1)!

n j j
j j

r r r
D

x x t x
I j dy dt dx dxdx dt

n j j

  
 

 
                        (5) 

 

Where 
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

 










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To simplify the calculation,do variable substitution  

 

0 0

0 0

( ) ,1 1

( ) ,1 1
r r

r r

x x x x u r j

y x x x v r j

     
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( ) ,

( ) ,
s s

s r

y x t x v j s n

t x t x w j s n

    
       

 

We obtain 

 

 
1

1 1 1 1
0 1 2 2 2 2 2

1 0 0**

( ) (1 ) ( )
( ) ( ) ( )

( 1)! ( 1)!

n j n j j i
j j j n j

r r s sD

x x u t x w
I j x x t x du dv dv dw dxdx dt

n j j

     
     

    
     (6) 

 

Where 

 

1 2 1 1

**
1 0

1 2 1 1

0 0

                                       and 0 1

    1,      1

j j j n

j j j n

u u u v v v

D x x t

v v v w w w

 

 

        
 

             
         

 

 
. 

 

Combined with Euler’s formula 

 
1 1 1

0

( ) ( )
(1 )

( )
x x dx   

 
   

 
 
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1

1 1 2 1 1
0 1

1 0**
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r r s sD
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* *
1 1 1

( 1) (2 3) ( 1)!(2 1)!
( ) ( ) ( )

(3 4)( )(2 2) (3 3)!

n j n j n j n j
I j I j I j

n n j n j n

         
   
                 (7) 

 

Where 

 

**
1

1 1
1*

1

(1 )
( )

( 1)! ( 1)!

J n j
j j

r r s s
D

w u
I j du dv dv dw

j n j

  



   

. 

 

Calculated with the aid of the determinant integral method 

 

 *
1

( 2) 1 1
( )

( 1)!( 1)! !( 1)! ( )!( 1)!

n j
I j

n j n n j n j n

  
        

                 (8) 

 

Therefore, substituting Eq. (8) into Eq. (7) yields 

 

 1

1 2 1 1 2 11 1
( )

1 1 2(3 3)! ( 1)

n j n j n j n j
I j

j n j j n jn n

              
                   

               (9) 

 

The same reasoning leads to  

 

 2

1 (2 )!

(3 3)! ( 1)! !

n
I

n n n


  , 3

1 (2 )!

(3 3)! ( 1)! !

n
I

n n n


  .                     (10) 

 

Combined with Eq. (9)-(10), it can be shown that 

 

 1
2 2

1 2 1 1 2 11 1
( )

1 1 2(3 3)! ( 1)

n n

j j

n j n j n j n j
I j

j n j j n jn n 

              
                   

            (11) 

 

Summarizing, we can obtain 

 

  
2

1

( ),( 2) 2 3
2 0

1 2 1 1 2 11

1 1 2( 1)n

n n

H n
j j

n j n j n j n j
H I I

j n j j n jn 




 

            
                  
        (12) 

 

Sign 

 

2 ( ),( 2) 1 2 2 3n H nH S S I I      
. 

 

By the combinatorial constant equation 

 

0

1n

i
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k n k n
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
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We have 

 

 1

3 1 21 2

( 1) ( 1)

n n
S

n nn n

   
        

                         (13) 

 

 2

3 1

2

n
S

n

 
   

                                (14) 

 

And the result is  

 

 2

2
( ),( 2)

(3 1)!
( 3 6)

!(2 3)!n H n

n
H n n

n n  


  

                      (15) 

 

It is the 6 th convolution of Catalan number [17,A143388], which shows that theorem1 holds,and thus the 
conjecture in the literature[14] is prove. 

Theorem 2 [14. Conjecture]. For 2n  , the enumeration formula for standard Young tableaux of shape
( 2)

1(( 2) ) \ ( ), ( 2)n
nn H n
   (as illustrated in Fig.3(b)) is: 

 

 ( 2)
1

2

(( 2) )\ ( ),( 2)

(3 1)!
( 3 6)

!(2 3)!
n

nn H n

n
H n n

n n
 


  

                     (16) 

 

which corresponds to a convolution of the Catalan triangle [17, A143388]. 

Proof. The labeling principle for standard Young tableaux requires that entries strictly increase across 
each row and down each column. The staircase-shaped standard Young tableaux of types

2 ( )( 2)n H n   and ( 2)
1(( 2) ) \ ( ), ( 2)n

nn H n
   are illustrated in Fig. 2(a) and Fig.2(b), respectively. 

 

 
(a)                 (b) 

Fig.2 SYT of the 2( ),( 2)n H n   shape and the ( 2)
1(( 2) \ )( )m

mn H
 shape 

 

The direction indicated by the arrow corresponds to the increasing order of the variable. It is evident 
that the integration variable ranges for both classes of standard Young tableaux are identical; thus, 
their derived formulas should coincide. Therefore, based on the result of Theorem 1, the enumeration 
formula for the shifted staircase-shaped standard Young tableaux of type ( 2)

1(( 2) ) \ ( ), ( 2)n
nn H n
   is: 
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( 2)
1

2

(( 2) )\ ( ),( 2)

(3 1)!
( 3 6)

!(2 3)!
n

nn H n

n
H n n

n n
 


  

  

 

which represents a convolution of the Catalan triangle [17, A143388]. 

3. Conclusion 

This paper transforms the counting problem of Standard Young Tableaux into multiple integrals over 
nested order statistics, thereby obtaining the enumeration of two classes of Standard Young Tableaux 
with approximately right-angled trapezoidal shapes. This confirms the conjecture in Reference, 
demonstrating that the result corresponds to a convolution of Catalan numbers. The work provides 
new theoretical support for the study of Standard Young Tableaux enumeration and holds significant 
importance in advancing combinatorial research. 
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