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Abstract 

This paper investigates the formation consensus for multi-robot networks subject to 
synergetic control (SC). The dynamics of multi-robot networks are modeled by the Euler-
Lagrange (EL) equations. With the use of the synergetic control, the finite-time 
convergence properties and chattering free phenomena of multi-robot networks under 
directed topologies are addressed by using the Lyapunov stability theory. Simulation 
results are provided to prove the validity of proposed control approaches. 
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1. Introduction 

1.1 Motivation 

In recent years, there has been a extensive exploration of the formation control problem in advanced 

multi-robot networks [1-3]. Because of the certain engineering goals, implementing formation control 

of a flock of robots based on nonlinear networks has resulted in a lot of concern among increasing 

researches. Moreover, compared to single robot, multi-robot networks have higher fault tolerance, 

flexible reconfgurability and higher work efficiency [4]. Among a great deal of research on multi-

robot formation control algorithms, the distributed tracking problem needs to be considered and there 

is a leader node in the networked systems, which serves as a command generator to generate specifed 

trajectories required for robot activities. Consequently, the follower robot systems need to track the 

curve of the leader node [5]. Secondly, the EL equations can usually be demanded to model quantities 

of mechanical structures, such as aircraft, manipulator, military industrial vehicle and helicopter [6-

8]. In this paper, the SC strategy of networked EL systems is discussed. Thirdly, the research in this 

paper involving the formation on networked EL systems is taken very seriously because of the need 

of overcoming chattering phenomena in applications, such as cooperative control on the robot 

formation or synchronous coordinating multi-motor systems. Therefore, the purpose of this paper is 

to derive SC strategies applied in the formation control for multi-robot networks based on EL systems 

with model uncertainties. 

1.2 Brief summary of prior literature 

The formation control problems of multi-robot networks have been extensively investigated. There 

exist the asymptotical convergence stability conditions in most published papers [9-11]. However, 

most results based on linear multi-robot dynamics cannot be fully applied to deal with the formation 

control issue for multi-robot systems based on EL model, which are used to describe a great deal of 

complex nonlinear networks[12-14]. As a result, the formation consensus of the EL multi-robot 

systems has been widely studied [15-17]. Compared with multiple asymptotical control methods, 
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finite-time control is prevailing for its higher control accuracy, faster convergence speed and stronger 

robustness [18-20]. Different from the traditional sliding mode control schemes, SC generates a 

smooth and non-switching continuous synergetic term [29]. Then a new approach law with property 

of finite-time convergence without chattering phenomena is obtained. In contrast to the previous 

results about synergetic control [21-23], it may be a first attempt to handle the formation control 

problem for multi-robot networks by the SC scheme while the finite-time stability is also necessary. 

Further, the advantages of the proposed controller are derived in this paper, in comparison to other 

finite-time formation control laws using SC, are that it can deal with multi-robot networks composed 

of nonlinear manipulators with dynamical EL-systems and the interconnection of the network is 

assumed to be modeled by a connected, directed, graph with fixed topology. 

1.3 Contribution of this paper 

In view of preceding literatures as far as the author knows, SC for synchronization of nonlinear multi-

robot networks based on EL model with time-delay and external disturbances is seldom investigated. 

The present paper aims to deal with this problem by using the SC scheme, directed topology graph 

theory and the Lyapunov stability theory. The main challenge is that the introduction of SC scheme 

to multi-robot systems represents a relatively big difficulty to the solution of this issue. The core 

contributions of this work can be listed as follows: 

1.The finite-time synergetic controller of nonlinear multi-robot networks based on EL model are 

obtained by distributed finite-time formation control schemes. 

2.The SC scheme mentioned in this paper generates a smooth and non-switching continuous 

synergetic term, which will overcome chattering phenomena. 

1.4 Organization 

The remainder of this work is structured as follows. Section 2 reviews the model of the EL system 

and related preliminaries in detail. In Section 3, the design of synergetic controller is elaborated, on 

basis of which the characteristics of finite-time convergence and nonchattering phenomena can be 

achieved. In Section 4, finite-time consensus control scheme for multi-robot networks is investigated 

by SC. Then the simulation results are described to achieve the effectiveness of the given distributed 

control algorithms in Section 5. Concluding conclusions are presented in Section 6 in the end. 

2. Preliminaries 

2.1 Algebraic graph theory 

Consider the multi-robot network that consists one leader and N followers. In order to 

reach the formation control consensus and realize the information exchange among 

multiple robots, we introduce the communication graph theory in the following. Let 𝒢 =
(𝒱,ℰ) be defined as the directed graph, where 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑁} acts as the set of 

nodes. The edge (𝑣𝑖, 𝑣𝑗) ∈ ℰ if the robot can transfer information to the robot directly, but 

not necessarily vice versa. Define the weighted adjacency matrix A = [aij] of 𝒢, where aij > 0 if there 

is an information channel between the 𝑖𝑡ℎrobot and the 𝑗𝑡ℎ  robot and aij = 0 otherwise. Define the 

diagonal matrix 𝐵 = 𝑑𝑖𝑎𝑔{𝑏1, 𝑏2, … , 𝑏𝑁}  and 𝑏 = [𝑏1, 𝑏2, … , 𝑏𝑁]𝑇  with elements bi= 1 if 

there is an information channel between the 𝑖𝑡ℎ follower robot and the leader, otherwise bi = 0. A 

directed spanning tree is a directed graph. Define Laplacian matrix of 𝒢as 𝐿 = [𝑙𝑖𝑗] whose elements 

is defined as 

𝑙𝑖𝑗 = {
𝑎𝑖𝑗 , 𝑖 ≠ 𝑗

− ∑ 𝑎𝑖𝑘 , 𝑖 = 𝑗𝑁
𝑘=1,𝑘≠𝑖

. 

2.2 Networked Euler-Lagrange systems 

Considering the multi-robot dynamics with model uncertainties defined by [24] 

𝑀𝑖(𝑞𝑖)𝑞̈𝑖 + 𝐶𝑖(𝑞𝑖 , 𝑞̇𝑖)𝑞̇𝑖 + 𝐺𝑖(𝑞𝑖) = 𝑢𝑖 + 𝛿𝑖(𝑡, 𝑞𝑖 , 𝑞̇𝑖, 𝜏𝑖)              (1) 

file:///C:/Users/wang/Desktop/ICJE-7-4/ICJE-20522+文章.doc%23_bookmark1
file:///C:/Users/wang/Desktop/ICJE-7-4/ICJE-20522+文章.doc%23_bookmark8
file:///C:/Users/wang/Desktop/ICJE-7-4/ICJE-20522+文章.doc%23_bookmark14
file:///C:/Users/wang/Desktop/ICJE-7-4/ICJE-20522+文章.doc%23_bookmark36
file:///C:/Users/wang/Desktop/ICJE-7-4/ICJE-20522+文章.doc%23_bookmark43


 

 

386 

International Core Journal of Engineering 

ISSN: 2414-1895 

Volume 7 Issue 4, 2021 

DOI: 10.6919/ICJE.202104_7(4).0052 

where 𝑞𝑖 = [𝑞𝑖1, 𝑞𝑖2, ⋯ , 𝑞𝑖𝑛]𝑇  ( 𝑖 = 1, ⋯ , 𝑁 ) represents joint positions, 𝐶𝑖(𝑞𝑖) ∈ 𝑅𝑛×𝑛  is the 

Coriolis and centripetal matrix and 𝐺𝑖(𝑞𝑖) ∈ 𝑅𝑛 is the gravitational torques. The inertia matrix 

𝑀𝑖(𝑞𝑖) ∈ 𝑅𝑛×𝑛 is denoted as the symmetric and positive-definite matrix, whereas 𝑢𝑖 ∈ 𝑅𝑛 represents 

the input torques and 𝛿𝑖 ∈ 𝑅𝑛 includes the external disturbances and system uncertainties. Matrices 

𝑀𝑖(𝑞𝑖) ∈ 𝑅𝑛×𝑛 and 𝐶𝑖(𝑞𝑖) ∈ 𝑅𝑛×𝑛 and vectors 𝐺𝑖(𝑞𝑖) ∈ 𝑅𝑛 are assumed to change depending on 

1 ≤ 𝑖 ≤ 𝑁. In fact, the behavior of the leader is in dependent of the followers, which means that 

leader’s state keeps changing freely throughout the entire process. Suppose that 𝑞0 is the leader 

robot’s desired input and the dynamic of the leader is defined by  

𝑀0(𝑞0)𝑞̈0 + 𝐶0(𝑞0, 𝑞̇0)𝑞̇0 + 𝐺0(𝑞0) = 𝑢0
.                    (2) 

Throughout subsequent analyses, the dynamics were assumed to satisfy the following assumptions 

[25,26]: 

Assumption 1. 𝑀𝑖(𝑞𝑖) ∈ 𝑅𝑛×𝑛in (1) is defined as positive definite symmetric and bounded matrix, 

that is, 𝑀𝑚 ≤∥ 𝑀𝑖(𝑞𝑖) ∥≤ 𝑀𝑀 for constants 𝑀𝑚
> 0 and 𝑀𝑀

> 0. 

Assumption 2. 𝛿𝑖 in (1) and 𝑢0in (2) are assumed to be bounded as follows: ‖𝛿𝑖‖ ≤ 𝑑̄ < ∞and 

‖𝑢0‖ ≤ 𝑢̄0 < ∞. Define 𝑑̄and 𝑢̄0  are positive constants. 

Remark 1. When designing control protocols for the uncertain EL systems, the information about 

matrix 𝑀𝑖(𝑞𝑖), input torques 𝑢0is not needed to be precisely achieved. Therefore, it just need to know 

the upper bound or an estimation in advance, which can be obtained in practical application. 

Assumption 3. The directed communication topology 𝒢 = (𝒱, ℰ) has a directed spanning tree if 

(𝒱, ℰ) exists one node at least in presence of a directed path to all other nodes. 

Remark 2. [27] A directed spanning tree of 𝒢 is a directed tree that contains all nodes of 𝒢, where 

each node contains accurately one parent exclusive of the root which contains a directed path to the 

other nodes. A directed graph contains a directed spanning tree on condition that one exists as a subset 

of a directed graph. 

2.3 Synergetic control procedure 

Consider the dynamic of nonlinear systems of the form 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡)                                (3) 

Where 𝑥 ∈ 𝑅𝑛 is the generalized state vector, 𝑢 ∈ 𝑅𝑛 represents the control torque. 

The main steps of design procedure for synergetic controller may be summarized as follows [28]: 

A macro variable 𝜓  defined for constructing a manifold in a nonlinear system yields: 𝑀 =
{𝑥 : 𝜓 (𝑥) = 0, 𝜓 ∈ 𝑅𝑛} where the macro variable 𝜓 acts as a function of states in nonlinear system. 

Basically, for simplicity, we chose a linear combination of the states of the system. 

A controller is synthesized that drives the system state exponentially to a specifed manifold whose 

dynamic evolution can be represented as 

𝑇𝜓̇ + 𝜓 = 0                                (4) 

where 𝑇 denotes a nonsingular positive definite diagonal matrix, satisfying 𝑇 = 𝑑𝑖𝑎𝑔{𝜏1, ⋯ , 𝜏𝑛}. 

The chain rule of differentiation is given by 𝜓̇ =
𝑑𝜓

𝑑𝑥
𝑥̇. Combining equations (3) and (4), it follows 

that 𝑇
𝑑𝜓

𝑑𝑥
𝑓(𝑥, 𝑢, 𝑡) + 𝜓 = 0 . Then equation (4) is ultimately carried out to design the control 

protocol u. 

2.4 Synergetic control design 

Define the error variable as 

𝑒𝑖(𝑡) = ∑ 𝑎𝑖𝑗[𝑞𝑖 − 𝑞𝑗(𝑡 − 𝑇𝑗𝑖)]𝑁
𝑗=1,𝑗≠𝑖 + 𝑏𝑖(𝑞𝑖 − 𝑞0)                (5) 
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where 𝑇𝑗𝑖  acts as a positive real constant, representing time-delay of information exchange between 

𝑖𝑡ℎ and 𝑗𝑡ℎ robot. 

Define the manifold as follows:  

𝑀𝜀𝑖
= {𝜀𝑖 : 𝜎𝑖 = 𝜓(𝜀𝑖) = 0, 𝜓 ∈ 𝑅𝑛} 

where 𝜓(𝜀𝑖) = 𝜆𝑖𝑒𝑖 + 𝑒̇𝑖
, 𝜀𝑖 = 𝑒̇𝑖

. 

Further, it follows that 

𝑒̈𝑖 = 𝜀𝑖̇ = −(𝜏𝑖𝜓𝜀𝑖
)

−1
𝜓(𝜀𝑖)                          (6) 

According to equation (1) and equations (5) -(6), we can obtain the SC laws: 

𝑢𝑖 = 𝐶𝑖𝑞̇𝑖 + 𝐺𝑖 + ( ∑ (𝑎𝑖𝑗 + 𝑏𝑖)

𝑁

𝑗=1,𝑗≠𝑖

)

−1

𝑀𝑖 [𝑒̈𝑖 + ∑ 𝑎𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑞̈𝑗(𝑡 − 𝑇𝑗𝑖) + 𝑏𝑖𝑞̈0] 

= 𝐶𝑖𝑞̇𝑖 + 𝐺𝑖 + ( ∑ (𝑎𝑖𝑗 + 𝑏𝑖)

𝑁

𝑗=1,𝑗≠𝑖

)

−1

𝑀𝑖 [ ∑ 𝑎𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑞̈𝑗(𝑡 − 𝑇𝑗𝑖) + 𝑏𝑖𝑞̈0] 

−(∑ (𝑎𝑖𝑗 + 𝑏𝑖)𝑁
𝑗=1,𝑗≠𝑖 )

−1
𝑀𝑖𝜏𝑖

−1(𝜆𝑖𝑒𝑖 + 𝑒̇𝑖)                    (7) 

Remark 3. Compared with the existing design schemes of distributed controller in the works like [29] 

which were confined to the single system, the controller designed in this paper is an effective 

compensation for formation control applied to a network of N EL systems. More precisely, in the 

networked EL system, only a few algorithms adopt SC methods to approximate the desired time-

varying trajectory. In addition, the method can also be applied to more general directed 

communication topology. 

Remark 4. Compared with communication topologies in the multi-robot networks about finite-time 

formation control algorithms which were undirected, the finite-time control methods proposed are 

based on directed graphs, which can contribute significantly to reducing the burden of information 

exchange.  

Remark 5. Different from traditional sliding mode control schemes, the SC provides a smooth, 

nonswitching continuous synergetic term which is continuous without abrupt change such that 

overcomes chattering phenomena. The controller can make the system state exponentially 

asymptotically reach the manifold. Once states reach manifolds, the synergetic controller will retain 

them thereafter. 

Definition 1. Assume that there exist the networked EL systems modeled by (1). Our goal is to ensure 

that all robots outputs can follow a time-varying reference trajectory generated by a leader, replaced 

with 0. The systems are said to synchronize in finite time T if 𝑞𝑖 → 𝑞0, 𝑞̇𝑖 → 𝑞̇0, for all i = 1, 2, N, 

as t >T. 

3. Main results 

In view of above discussions, we know that the control scheme achieved in this paper is introduced 

by combining the matrix properties of graph theory and SC design techniques. To illustrate the 

consensus of formation control and feasibility of the considered control protocol in this section, one 

gives necessary and sufficient derivation of main theorems in detail in Section 4. 

4. Synergetic control for multi-robot networks 

When Tji = 0, according to SC laws (7), we can obtain 
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𝑢𝑖 = 𝐶𝑖𝑞̇𝑖 + 𝐺𝑖 + ( ∑ (𝑎𝑖𝑗 + 𝑏𝑖)

𝑁

𝑗=1,𝑗≠𝑖

)

−1

𝑀𝑖 [ ∑ 𝑎𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑞̈𝑗 + 𝑏𝑖 𝑞̈0] 

−(∑ (𝑎𝑖𝑗 + 𝑏𝑖)𝑁
𝑗=1,𝑗≠𝑖 )

−1
𝑀𝑖𝜏𝑖

−1(𝜆𝑖𝑒𝑖 + 𝑒̇𝑖)                     (8) 

Theorem 1. Consider the N EL robots model (1) in the absence of disturbances. The errors and error 

rates in multi-robot system will guarantee convergence asymptotically to zero exponentially under 

the speed of convergence rate τi if dynamic controller is selected as (8), where τi is element of the 

nonsingular positive definite diagonal matrix T. 

Proof : Choose a Lyapunov candidate function V=½ ψ(ε)T ψ (ε) where  

𝜓(𝜀) = (𝜓(𝜀1)𝑇 , … , 𝜓(𝜀𝑁)𝑇)𝑇. 

Using the fact that 𝑇is a nonsingular positive definite diagonal matrix, then 𝑇−1 is also positive 

definite.  

Differentiating V along (4) yields  

𝑉̇ =
𝑑

𝑑𝑡
(

1

2
𝜓(𝜀)𝑇𝜓(𝜀)) = −𝑇−1‖𝜓(𝜀)‖2 ≤ 0 

In view of inequality V, it can be guaranteed that the stability of the N robots cooperative systems (1) 

with the control input (8) when δi = 0. The errors and error rates in system will ensure convergence 

exponentially. 

The errors and error rates in system will ensure convergence exponentially asymptotically to zero, 

namely, 𝜆𝑖𝑒𝑖 + 𝑒̇𝑖 → 0. We can easily get the properties of asymptotical convergence about 𝑒𝑖 and 

𝑒̇𝑖. When ei = 0, it holds that 

[(ℒ + ℬ) ⊗ 𝐸𝑛] [

𝑞1

⋮
𝑞𝑁

] = [(ℒ + ℬ) ⊗ 𝐸𝑛](1𝑁 ⊗ 𝑞0). 

In light of Lemma 2, ℒ +ℬ is invertible. Therefore, it is clear that [𝑞1, ⋯ , 𝑞𝑁]𝑇 = 1𝑁 ⊗ 𝑞0 and it 

follows that [𝑞̇1, ⋯ , 𝑞̇𝑁]𝑇 = 1𝑁 ⊗ 𝑞̇0. 

5. Numerical simulation 

Considering the nominal model of networked EL systems, a group of two-link robot manipulators 

may be simulated for validating tracking performance of the proposed controller strategies in this 

section [25, 30]. Assume that we take four two-link robot manipulators as followers and the remaining 

manipulator as a leader for the multi-robot systems. The internal structure of a two-link revolute 

manipulator is depicted in Fig. 1. The parameters of manipulators are set as follows: the  

 

          

Fig. 1 two-link manipulator platform        Fig. 2 Communication topology 
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acceleration of gravity is 𝑔 = 9.8𝑚/𝑠2; the masses of links 1 and 2 are 𝑚𝑖1 = 𝑚𝑖2 = 1𝑘𝑔; the 

lengths of links 1 and 2 are 𝑙𝑖1 = 𝑙𝑖2 = 1𝑚; the moments of inertia of links 1 and 2 are 𝐽𝑖1 =
0.2𝑘𝑔𝑚2 and 𝐽𝑖2 = 0.4𝑘𝑔𝑚2, respectively. Suppose the directed communication topology used to 

model the information communication among robots is depicted in Fig. 2, where node 0 denotes the 

leader manipulator and others denote the followers. For easy of plotting, we assume that each 

manipulator keeps the state value uniformly. It is clear that the communication topology is directed 

and the information exchange occurs only between the leader and followers 1 and 4. 

 

Fig. 3 Joint 1 and 2 positions of all manipulators 

 

 

Fig. 4 Joint 1 and 2 velocities of all manipulators 
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5.1 Example  

Let the leader track the curves of 𝑞0(𝑡) = (20 𝑠𝑖𝑛 (
𝜋𝑡

20
) + 10,15 𝑐𝑜𝑠 (

𝜋𝑡

20
) + 20)

𝑇

. 𝑞0(0) =

(10,20)𝑇. Let the initial conditions of the four follower manipulators be 𝑞1(0) = (1,3)𝑇, 𝑞2(0) =
(2,4)𝑇 ,  𝑞3(0) = (4, −2)𝑇 , 𝑞4(0) = (5,6)𝑇 , respectively. Here, we select 𝜏1 = 𝜏2 = 1 and 𝜆1 =
𝜆2 = 1. In the following, the sufficient results are represented in Fig. 3 to Fig. 4 with the SC scheme 

(8) in Theorem 1. Fig. 3 and Fig. 4 show the trajectories of the angle positions and angle velocities 

for the manipulators, respectively. It is easy to find that each manipulator follower can converge to 

the leader in finite time. 

It can be concluded that the amplitude of control input tends to zero smoothly when the multi-robot 

networks achieves formation consensus, so that the validity of the chattering-free can be verified. 

6. Conclusion 

This paper mainly investigates the the robust formation control for multi-robot networks via 

synergetic control. Based on SC scheme, distributed networked control algorithms are provided under 

finite-time formation and directed topologies. As claimed in numerical results simulated, it can be 

derived that the effectiveness of the proposed methods and the elimination of the chattering 

phenomena can be reached. 

7. Appendix A. Some lemmas 

Lemma 1. [31] If choose states 𝑥𝑖 ∈ 𝑅 , 𝑖 = 1,2, ⋯ , 𝑁 , for 0 < 𝑝 < 2 , leads to ∑ |𝑥𝑖|
𝑝𝑁

𝑖=1 ≥
(∑ 𝑥𝑖

2𝑁
𝑖=1 )𝑝/2, especially when 𝑝 = 1, − ∑ |𝑥𝑖|

𝑝𝑁
𝑖=1 ≤ −(∑ 𝑥𝑖

2𝑁
𝑖=1 )1/2. 

Lemma 2. [32] If there exists a directed spanning tree in topology 𝒢 = (𝒱,ℰ), yields rank(ℒ)=N. In 

addition, for any elements in the last row of ℒ are all zeros so as to obtain the condition where rank 

[ℒ+ℬ − 𝑏] = 𝑁. 
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