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Abstract 

In this paper, one new 3D fractional-order chaotic system with only one stable equilibrium 
is reported. To verify the chaoticity, the maximum Lyapunov exponent (MAXLE) with 
respect to the fractional-order and chaotic attractors are obtained by numerical calculation 
for this system. Numerical simulation results show that the chaotic attractor is emerged for 

the system when 1958.0  q . 
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1. Introduction 

Fractional-order calculus is an old branch of mathematics,which can be dated back to the 17th century 

[1, 2]. Now, it is well-known that many real-world physical systems [1–4] can be more accurately 

described by fractional-order differential equations, for example, dielectric polarization, 

viscoelasticity, electrode-electrolyte polarization, electromagnetic waves, diffusion-wave, 

superdiffusion, heat conduction.Meanwhile, chaotic behavior has been found in many fractional-order 

systems like the fractional-order brushless DC motor chaotic system [5,6], the fractional-order 

gyroscopes chaotic system[7], the fractional-order microelectromechanical chaotic system[8], the 

fractional-order electronic circuits [9, 10], and so forth [11–16]. 

Recently, a simple three-dimensional autonomous chaotic system [17] with only one stable node-focus 

equilibrium has been reported by Wang and Chen. Due to the impossibility of existence of homoclinic 

orbit and the unique stable node-focus equilibrium in this striking chaotic system, the well-known 

Si’lnikov criterions are not applicable. To verify the chaoticity in this system, Wang and Chen[17] 

calculated the largest Lyapunov exponent, fractional dimension, and continuous broad frequency 

spectrum by numerical calculation. Huan et al. presented a rigorous computer-assisted verification of 

horseshoe chaos by virtue of topological horseshoe theory [18]. Up to now, some integer order chaotic 

systems with stable node-focus equilibrium have been presented. To the best of our knowledge, many 

previous fractional-order chaotic systems like the fractional-order Lorenz chaotic system [19], the 

fractional-order Chen chaotic system [20], the fractional-order Lu chaotic system [21], the 

fractional-order brushless DC motor chaotic system [5, 6], the fractional-order gyroscopes chaotic 

system [7], the fractional-order microelectromechanical chaotic system [8], and so forth [9–14, 22, 23] 

have unstable equilibrium. There are seldom results on fractional-order chaotic systems with stable 

equilibrium. Hence, the finding of fractional-order chaotic systems with stable equilibrium is still an 

open problem. 

Motivated by the above discussions, a three-dimensional autonomous fractional-order chaotic system 

with only one locally asymptotically stable equilibrium is proposed in this paper. The argument of all 

eigenvalues at equilibrium point satisfies  3,2,15.0)arg(  ii  .Up to now, to the best of our 
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knowledge, there are few results about the fractional-order chaotic systems with stable equilibrium. To 

verify the chaoticity in this fractional-order system, the maximum Lyapunov exponent and chaotic 

attractors are yielded by numerical calculation. The organization of this paper is as follows: in Section 

2, a new fractional-order chaotic system with only one stable equilibrium is presented, and the 

maximum Lyapunov exponent and chaotic attractors are obtained. The conclusion is finally drawn in 

Section 3. 

2. A New Fractional-Order Chaotic Systems with Only One Stable Equilibrium 

In this paper, the q-order Caputo derivative for function  ty is defined as follows: 
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Now, we consider the following 3D nonlinear fractional-order system: 
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And, here, the fractional-order is 0 < q <1 

First, let us recall the stability theorem for nonlinear commensurate fractional-order systems. 

Lemma 1 (see [24, 25]). Consider the following fractional-order nonlinear system: 
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Where 0 < q < 1  is fractional-order,   nRtx   are state variables, and 
nn RRg :  is a nonlinear 
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matrix of   txg  at equilibrium point 
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x  and  nii ,,2,1  are the eigenvalues of matrix J . 

Now, we can obtain that system (2) has only one equilibrium point; that is,  0,0,0,, 321 

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Meanwhile, we can yield the eigenvalues of Jacobean matrix at equilibrium point as follows: 11  , 

and i225.0 So, we can obtain  5.0)arg( i >  3,2,15.0 iq . According to the lemma, the 

equilibrium point  0,0,0,, 321 
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xxx is locally asymptotically stable. Therefore, the equilibrium in 

system (2) is asymptotically stable. 

Next, we discuss the numerical solution for system (2). Based on [20], we set N
Th   and 

 Nnnhtn ,2,1,0  and let initial condition be       0,0,0 321 xxx . Soothe fractional-order system 

(2) can be discretized as follows: 
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The error of this approximation is described as 

     p

ini hnxtx               qpi  1,2min,3,2,1                      (6) 

Now, some results are obtained by numerical calculation. Let 96.0q ; Figure 1 show the results with 

initial condition         1,1,2.10,0,0 321 xxx . 

 

Fig. 1 A chaotic attractor in the system for 96.0q  

The results in Figure 1 indicate that system (2) has a chaotic attractor if initial conditions are chosen 

as         1,1,2.10,0,0 321 xxx . 

To verify the chronicity in system (2), we choose the initial conditions as 

        1,1,2.10,0,0 321 xxx  and calculate the maximum Lyapunov exponent (MAXLE) of system 

(2) with respect to the fractional-order q  by numerical calculation. We obtain that the maximum 

Lyapunov exponent (MAXLE) is larger than zero for 1958.0  q . Figure 2 shows the maximum 

Lyapunov exponent (MAXLE) varies as fractional-order q . So, the chaotic attractor is emerged in 

system (2) for 1958.0  q . 
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Fig. 2 The maximum Lyapunov exponent (MAXLE) varies as 

Fractional-order q  

For example, the MAXLE is 0.0022 when 958.0q , and its chaotic attractor is shown as Figure 3, 

while the MAXLE is 0.0946 when 96.0q , and its chaotic attractor is shown as Figure 1. 

 

Fig. 3 A chaotic attractor in system (2) for 958.0q  

3. Conclusion 

One new fractional-order chaotic system with only one stable equilibria point is reported in this paper. 

By numerical calculation, we yield the maximum Lyapunov exponent spectrum for this new 

fractional-order chaotic system, and the chaotic attractor can been found when 1958.0  q . The 

chaotic attractors for 958.0q  and 96.0q  are given. Of course, How to control the chaos of the 

system will be the next research direction. 
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