A New 3D Fractional-Order Chaotic System and its proof

Meihua Ke^a, Peng Zhu

Research Center of Analysis and Control for Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

akemeihua@foxmail.com

Abstract

In this paper, one new 3D fractional-order chaotic system with only one stable equilibrium is reported. To verify the chaoticity, the maximum Lyapunov exponent (MAXLE) with respect to the fractional-order and chaotic attractors are obtained by numerical calculation for this system. Numerical simulation results show that the chaotic attractor is emerged for the system when $0.958 \le q \le 1$.

Keywords

fractional-order chaotic system, equilibrium, Lyapunov exponent, numerical simulation

1. Introduction

Fractional-order calculus is an old branch of mathematics, which can be dated back to the 17th century [1, 2]. Now, it is well-known that many real-world physical systems [1–4] can be more accurately described by fractional-order differential equations, for example, dielectric polarization, viscoelasticity, electrode-electrolyte polarization, electromagnetic waves, diffusion-wave, superdiffusion, heat conduction.Meanwhile, chaotic behavior has been found in many fractional-order systems like the fractional-order brushless DC motor chaotic system [5,6], the fractional-order gyroscopes chaotic system[7], the fractional-order microelectromechanical chaotic system[8], the fractional-order electronic circuits [9, 10], and so forth [11–16].

Recently, a simple three-dimensional autonomous chaotic system [17] with only one stable node-focus equilibrium has been reported by Wang and Chen. Due to the impossibility of existence of homoclinic orbit and the unique stable node-focus equilibrium in this striking chaotic system, the well-known Si'lnikov criterions are not applicable. To verify the chaoticity in this system, Wang and Chen[17] calculated the largest Lyapunov exponent, fractional dimension, and continuous broad frequency spectrum by numerical calculation. Huan et al. presented a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoe theory [18]. Up to now, some integer order chaotic systems with stable node-focus equilibrium have been presented. To the best of our knowledge, many previous fractional-order chaotic systems like the fractional-order Lorenz chaotic system [19], the fractional-order Chen chaotic system [20], the fractional-order Lu chaotic system [21], the fractional-order brushless DC motor chaotic system [5, 6], the fractional-order gyroscopes chaotic system [7], the fractional-order microelectromechanical chaotic system [8], and so forth [9–14, 22, 23] have unstable equilibrium. There are seldom results on fractional-order chaotic systems with stable equilibrium. Hence, the finding of fractional-order chaotic systems with stable equilibrium is still an open problem.

Motivated by the above discussions, a three-dimensional autonomous fractional-order chaotic system with only one locally asymptotically stable equilibrium is proposed in this paper. The argument of all eigenvalues at equilibrium point satisfies $|\arg(\lambda_i)| \ge 0.5\pi (i = 1, 2, 3)$. Up to now, to the best of our

knowledge, there are few results about the fractional-order chaotic systems with stable equilibrium. To verify the chaoticity in this fractional-order system, the maximum Lyapunov exponent and chaotic attractors are yielded by numerical calculation. The organization of this paper is as follows: in Section 2, a new fractional-order chaotic system with only one stable equilibrium is presented, and the maximum Lyapunov exponent and chaotic attractors are obtained. The conclusion is finally drawn in Section 3.

2. A New Fractional-Order Chaotic Systems with Only One Stable Equilibrium

In this paper, the q-order Caputo derivative for function y(t) is defined as follows:

$${}_{0}^{c}D_{t}^{q}y(t) = \frac{1}{\Gamma(n-q)} \int_{0}^{t} \left[\frac{d^{n}y(\tau)}{d\tau^{n}} \right] (t-\tau)^{n-q-1} d\tau$$

$$\tag{1}$$

Where $n-1 \le q < n \in Z^+$ and $\Gamma(n-q) = \int_0^{+\infty} t^{n-q-1} e^{-t} dt$ is the Gamma function.

Now, we consider the following 3D nonlinear fractional-order system:

$${}_{0}^{c}D_{t}^{q}x_{1}(t) = \left(x_{2}(t) + \frac{1}{16}\right)x_{3}(t)$$

$${}_{0}^{c}D_{t}^{q}x_{2}(t) = x_{1}^{2}(t) + 0.5x_{1}(t) - x_{2}(t)$$

$${}_{0}^{c}D_{t}^{q}x_{3}(t) = -2x_{1}(t)$$
(2)

And, here, the fractional-order is 0 < q < 1

First, let us recall the stability theorem for nonlinear commensurate fractional-order systems.

Lemma 1 (see [24, 25]). Consider the following fractional-order nonlinear system:

$${}_{0}^{c}D_{t}^{q}x(t) = g(x(t))$$
(3)

Where 0 < q < 1 is fractional-order, $x(t) \in \mathbb{R}^n$ are state variables, and $g: \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear continuous vector function. The equilibrium point $\overline{x}\left(i.e., g\left(\overline{x}\right)=0\right)$ in nonlinear fractional-order system (3) is locally asymptotically stable if $|\arg(\lambda_i(J))| \ge 0.5\pi q$ (i = 1, 2, ..., n) here, *J* is the Jacobean matrix of g(x(t)) at equilibrium point \overline{x} and λ_i (i = 1, 2, ..., n) are the eigenvalues of matrix *J*.

Now, we can obtain that system (2) has only one equilibrium point; that is, $(\bar{x}_1, \bar{x}_2, \bar{x}_3) = (0,0,0)$. Meanwhile, we can yield the eigenvalues of Jacobean matrix at equilibrium point as follows: $\lambda_1 = -1$, and $\lambda_{\pm} = \pm 0.25\sqrt{2}i$ So, we can obtain $|\arg(\lambda_i)| \ge 0.5\pi > 0.5\pi q$ (i = 1,2,3). According to the lemma, the equilibrium point $(\bar{x}_1, \bar{x}_2, \bar{x}_3) = (0,0,0)$ is locally asymptotically stable. Therefore, the equilibrium in system (2) is asymptotically stable.

Next, we discuss the numerical solution for system (2). Based on [20], we set h = T/N and $t_n = nh(n = 0, 1, 2, ..., N)$ and let initial condition be $(x_1(0), x_2(0), x_3(0))$. Soothe fractional-order system (2) can be discretized as follows:

$$x_{1}(n+1) = x_{1}(0) + \frac{h^{q}}{\Gamma(q+2)} \left\{ \left[x_{2}^{p}(n+1) + \frac{1}{16} \right] \cdot x_{3}^{p}(n+1) + \sum_{j=0}^{n} \alpha_{1,j,n+1} \left[x_{2}(j) + \frac{1}{16} \right] x_{3}(j) \right\}$$

$$x_{2}(n+1) = x_{2}(0) + \frac{h^{q}}{\Gamma(q+2)} \left\{ \left[\left(x_{1}^{p}(n+1) \right)^{2} + 0.5x_{1}^{p}(n+1) - x_{2}^{p}(n+1) \right] + \sum_{j=0}^{n} \alpha_{2,j,n+1} \left[\left(x_{1}(j) \right)^{2} + 0.5x_{1}(j) - x_{2}(j) \right] \right\}$$

$$x_{3}(n+1) = x_{3}(0) + \frac{h^{q}}{\Gamma(q+2)} \left\{ \left[-2x_{1}^{p}(n+1) \right] + \sum_{j=0}^{n} \alpha_{3,j,n+1} \left[-2x_{1}(j) \right] \right\}$$
(4)

Where

$$\begin{aligned} x_{1}^{p}(n+1) &= x_{1}(0) + \frac{1}{\Gamma(q)} \sum_{j=0}^{n} b_{1,j,n+1} \bigg[x_{2}(j) + \frac{1}{16} \bigg] x_{3}(j) \\ x_{2}^{p}(n+1) &= x_{2}(0) + \frac{1}{\Gamma(q)} \sum_{j=0}^{n} b_{2,j,n+1} \big[(x_{1}(j))^{2} + 0.5x_{1}(j) - x_{2}(j) \big] \\ x_{3}^{p}(n+1) &= x_{3}(0) + \frac{1}{\Gamma(q)} \sum_{j=0}^{n} b_{3,j,n+1} \big[-2x_{1}(j) \big] \\ \alpha_{i,j,n+1} &= \begin{cases} n^{q+1} - (n-q)(n+1)^{q}, & j = 0 \\ (n-j+2)^{q+1} + (n-j)^{q+1} - 2(n-j+1)^{q+1}, & 1 \le j \le n \\ 1, & j = n+1 \end{cases}$$
(5)
$$b_{i,j,n+1} &= \frac{h^{q}}{q} \big[(n-j+1)^{q} - (n-j)^{q} \big], & 0 \le j \le n \end{aligned}$$

The error of this approximation is described as

$$|x_i(t_n) - x_i(n)| = o(h^p)$$
 (i = 1,2,3), $p = \min(2,1+q)$ (6)

Now, some results are obtained by numerical calculation. Let q = 0.96; Figure 1 show the results with initial condition $(x_1(0), x_2(0), x_3(0)) = (-1.2, 1, 1)$.

Fig. 1 A chaotic attractor in the system for q = 0.96

The results in Figure 1 indicate that system (2) has a chaotic attractor if initial conditions are chosen $as(x_1(0), x_2(0), x_3(0)) = (-1.2, 1, 1)$.

То verify the chronicity in system (2), we choose the initial conditions as $(x_1(0), x_2(0), x_3(0)) = (-1.2, 1, 1)$ and calculate the maximum Lyapunov exponent (MAXLE) of system (2) with respect to the fractional-order q by numerical calculation. We obtain that the maximum Lyapunov exponent (MAXLE) is larger than zero for $0.958 \le q \le 1$. Figure 2 shows the maximum Lyapunov exponent (MAXLE) varies as fractional-order q. So, the chaotic attractor is emerged in system (2) for $0.958 \le q \le 1$.

Fig. 2 The maximum Lyapunov exponent (MAXLE) varies as Fractional-order q

For example, the MAXLE is 0.0022 when q = 0.958, and its chaotic attractor is shown as Figure 3, while the MAXLE is 0.0946 when q = 0.96, and its chaotic attractor is shown as Figure 1.

Fig. 3 A chaotic attractor in system (2) for q = 0.958

3. Conclusion

One new fractional-order chaotic system with only one stable equilibria point is reported in this paper. By numerical calculation, we yield the maximum Lyapunov exponent spectrum for this new fractional-order chaotic system, and the chaotic attractor can been found when $0.958 \le q \le 1$. The chaotic attractors for q = 0.958 and q = 0.96 are given. Of course, How to control the chaos of the system will be the next research direction.

Acknowledgments

This work is supported in part by Innovation Team Project of Chongqing Education Committee (CXTDX201601019).

References

- [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999.
- [2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [3] L. P. Chen, Y. G. He, Y. Chai, and R. C. Wu, "New results on stability and stabilization of a class of nonlinear fractional-order systems," Nonlinear Dynamics, vol. 75, no. 4, pp. 633–641, 2014.
- [4] C. P. Li, Z. G. Zhao, and Y. Q. Chen, "Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion," Computers and Mathematics with Applications, vol. 62, no. 3, pp. 855–875, 2011.
- [5] P. Zhou, H. Cai, and C. D. Yang, "Stabilization of the unstable equilibrium points of the fractional-order BLDCM chaotic system in the sense of Lyapunov by a single-state variable,"Nonlinear Dynamics, vol. 84, no. 4, pp. 2357–2361, 2016.
- [6] P. Zhou, R. G. Bai, and J.M. Zheng, "Stabilization of a fractional order chaotic brushless DCmotor via a single input," Nonlinear Dynamics, vol. 82, no. 1, pp. 519–525, 2015.

- [7] M. P. Aghababa and H. P. Aghababa, "The rich dynamics of fractional-order gyros applying a fractional controller," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 227, no. 7, pp. 588–601,2013.
- [8] M. P. Aghababa, "Chaos in a fractional-order micro-electromechanical resonator and its suppression," Chinese Physics B, vol. 21, no. 10, Article ID 100505, 9 pages, 2012.
- [9] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, "Chaos in a fractional order Chua's system," IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications, vol. 42, no. 8, pp. 485–490, 1995.
- [10] H. Y. Jia, Z. Q. Chen, and G. Y. Qi, "Chaotic characteristics analysis and circuit implementation for a fractional-order system," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 845–853, 2014.
- [11] P. Zhou, R. G. Bai, and J. M. Zheng, "Projective synchronization for a class of fractional-order chaotic systems with fractionalorder in the (1, 2) interval," Entropy, vol. 17, no. 3, pp. 1123–1134, 2015.
- [12] C. D. Yang, H. Cai, and P. Zhou, "Compound generalized function projective synchronization for fractional-order chaotic systems," Discrete Dynamics in Nature and Society, vol. 2016, Article ID 7563416, 8 pages, 2016.
- [13] C. M. Jiang, S. T. Liu, and D. Wang, "Generalized combination complex synchronization for fractional-order chaotic complex systems," Entropy, vol. 17, no. 8, pp. 5199–5217, 2015.
- [14] C. D. Yang, H. Cai, and P. Zhou, "Stabilization of the fractionalorder chua chaotic circuit via the caputo derivative of a single input," Discrete Dynamics in Nature and Society, vol. 2016, Article ID 4129756, 5 pages, 2016.
- [15] J. Ma, X.Wu, R. Chu, and L. Zhang, "Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice," Nonlinear Dynamics, vol. 76, no. 4, pp. 1951–1962, 2014.
- [16] J. Ma, F. Q. Wu, G. D. Ren, and J. Tang, "A class of initialsdependent dynamical systems," AppliedMathematics and Computation, vol. 298, pp. 65–76, 2017.
- [17] X. Wang and G. Chen, "A chaotic system with only one stable equilibrium," Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1264–1272, 2012.
- [18] S. Huan, Q. Li, and S. Yang, "Horseshoes in a chaotic system with only one stable equilibrium," International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 23, no. 1, Article ID 1350002, 2013.
- [19] I. Grigorenko and E. Grigorenko, "Chaotic dynamics of the fractional Lorenz system," Physical Review Letters, vol. 91, no. 3, pp. 034101–034104, 2003.
- [20]C. P. Li and G. J. Peng, "Chaos in chen's system with a fractional order," Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 443–450, 2004.
- [21] W. H. Deng and C. P. Li, "Chaos synchronization of the fractional Lu system," Physica A: Statistical Mechanics and its Applications, vol. 353, no. 1–4, pp. 61–72, 2005.
- [22]X. J. Wu, J. Li, and G. R. Chen, "Chaos in the fractional order unified system and its synchronization," Journal of the Franklin Institute, vol. 345, no. 4, pp. 392–401, 2008.
- [23] J.Ma, F. Q. Wu, W. Y. Jin, P. Zhou, and T. Hayat, "Calculation of hamilton energy and control of dynamical systems with different types of attractors," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 5, Article ID053108, 2017.
- [24]K. Diethelm and N. J. Ford, "Analysis of fractional differential equations," Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.
- [25]E. Ahmed, A. M. A. El-Sayed, and H.-A.-A. El-Saka, "Equilibrium points, stability and numerical solutions of fractionalorder predator-prey and rabies models," Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.