
International Core Journal of Engineering Vol.3 No.5 2017                                                  ISSN: 2414-1895 

 

55 

 

Adaptive Learning Control of Chaotic Brushless DC Motors 

Mingzhu Yan, Xueqing Zhou 

Research Center of Analysis and Control for Complex Systems, Chongqing University of 
Posts and Telecommunications, Chongqing 400065, China 

 

Abstract 

In this paper, the problems of globally asymptotical stability of chaotic brushless DC 
motors(BLDCM) with single input is studied respectively. Then, by applying adaptive 
control technology and stability theory, we design three controllers to achieve the stability 
of the chaotic brushless DC motors. The numerical simulations show the correctness of the 
proposed methods. 
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1. Introduction 

During recent years, there has been significant effort in improving the performance of 

electricmotors[4]-[8]. In electric traction and most other applications, a wide range of speed and 

torque control of the electric motor is required. The DC machine fulfills these requirements, but it 

requires constant maintenance. In the brushless permanent magnet motors, they do not have brushes 

and so there will be lesser maintenance, brushless DC motors are widely used in applications because 
of its low inertia, fast response, high reliability and less maintenance. In comparison to classical dc 

motors, brushless dc motors are very reliable. However, they can also fail which caused by 

overheating, mechanical wear or disadvantage chaotic phenomena. As we known that chaotic 

phenomena in numerous natural and social systems have attracted a great interest, very often, chaos 

in many control systems is a source of instability[1]-[5]. Especially, in the complex industries. In this 

paper, we will use adaptive control technology to design three single input controllers to stabilize the 

unstable BLDCM system, and without loss of generality. 

The structure of the paper is as follows: In Section 2, the problem of state estimation and control of 
DC motors is analyzed. In Section 3 adaptive control of chaotic BLDCM with single input is 

discussed. In Section4, the numerical simulations show the correctness of the proposed methods. 

Finally, Section 5 is the conclusion. 

2. Description of the chaotic BLDCM 

In this section, the mathematical dq-model of BLDCM is given by [17] 

{
 
 

 
 

 

𝑑𝑖𝑑

𝑑𝑡
= 𝑢𝑑 − 𝛿𝑖𝑑 + 𝑖𝑞𝑤

 𝑑𝑖𝑞

𝑑𝑡
= 𝑢𝑞 − 𝑖𝑞 + 𝑖𝑑𝑤 + 𝛾𝑤

𝑑𝑤

𝑑𝑡
= 𝜎(𝑖𝑞 − 𝑤) − 𝑇𝐿

                                          (2.1) 

where variables 𝑖𝑞 ,𝑖𝑑  and 𝑤 denote angle speed, quadrature and direct axis current of the motor, 

respectively. 𝛿 and 𝜎 are positive parameters, which determine the type of the dynamical regime of 

the motor. If the motor is running freely under no loading conditions, it hold that 𝑢𝑞 = 0, 𝑢𝑑 = 0and 

𝑇𝐿 = 0.For simplification of our discussion, let𝑥1 = 𝑖𝑑, 𝑥2 = 𝑖𝑞, 𝑥3 = 𝑤,system (2.1) becomes: 
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{

𝑥1̇ = −𝛿𝑥1 + 𝑥2𝑥3,
𝑥2̇ = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3,

𝑥3̇ = 𝜎(𝑥2 − 𝑥3),
                                                  (2.2) 

For the purpose to study the stability property at zero equilibrium point, add controllers ui(i =1, 2, 3) 

to system (2.2), one can obtain that: 

{

𝑥1̇ = −𝛿𝑥1 + 𝑥2𝑥3 + 𝑢1,
𝑥2̇ = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢2,

𝑥3̇ = 𝜎(𝑥2 − 𝑥3) + 𝑢3,
                                         (2.3) 

 

3. Adaptive control of chaotic BLDCM with single input 

In this section, by using the adaptive controller with single input, we will study the stability property 

of the chaotic BLDCM at zero equilibrium point. 

If the parameter γ in system (2.3) is uncertain, let �̂�be the estimate of the uncertain parameter γ,and 

𝛾 = �̂� − 𝛾,one can construct the following controlled system: 

{

𝑥1̇ = −𝛿𝑥1 + 𝑥2𝑥3 + 𝑢,

𝑥2̇ = −𝑥2 − 𝑥1𝑥3 + (�̂� − 𝛾)𝑥3 + 𝑢2,

𝑥3̇ = 𝜎(𝑥2 − 𝑥3) + 𝑢3,
                           (3.1) 

Theorem3.1 If the following adaptive controller is added to system (3.1) 

{

𝑢1 = 𝑢3 = 0,
𝑢2 = −(�̂� + 𝜎)𝑥3,

�̇̂� = �̇� = 𝑥2𝑥3

                                                     (3.2) 

Then, the controlled system (3.1) is globally asymptotically stable at the zero equilibrium point. 

Proof: Construct the radially unbounded and positive Lyapunov function: 

𝑉1 =
1

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝛾2)                                         (3.3) 

The derivative of 𝑉1, taking into account of the model (3.1) and controller (3.2), is found to be 

𝑉1̇ = 𝑥1𝑥1̇ + 𝑥2𝑥2̇ + 𝑥3𝑥3̇ + 𝛾�̇�                                       = 𝑥1(−𝛿𝑥1 + 𝑥2𝑥3) + 𝑥2(−𝑥2 − 𝑥1𝑥3 +
�̂�𝑥3 − 𝛾𝑥3 − (�̂� + 𝜎)𝑥3 + 𝑥3𝜎(𝑥2 − 𝑥3) + 𝛾𝑥2𝑥3)      (3.4)  = −𝛿𝑥1

2 − 𝑥2
2 −𝜎𝑥3

2 ≤ 0 

By LaSalle-Yoshizawa theorem [18], one obtains that 

lim
𝑡→∞

(𝛿𝑥1
2 + 𝑥2

2 + 𝜎𝑥3
2) = 0                                                  

So, the controlled system (3.2) is globally asymptotically stable at the zero equilibrium point 

If the parameter 𝜎 in system (3.1) is uncertain, one has: 

{

𝑥1̇ = −𝛿𝑥1 + 𝑥2𝑥3 + 𝑢1,
𝑥2̇ = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢2,

𝑥3̇ = (�̂� − �̃�)(𝑥2 − 𝑥3) + 𝑢3,
                                       (3.5) 

where �̂� is the estimate of the uncertain parameter 𝜎, �̃� = �̂� −  𝜎. 

Theorem 3.2 If the following adaptive controller is added to system (3.4) 

{

𝑢1 = 𝑢3 = 0,

𝑢2 = −(�̂� + 𝛾)𝑥2 + (�̂� − 1)𝑥3,

�̇̂� = �̇̃� = 𝑥3(𝑥2 − 𝑥3)

                                    (3.6) 

the controlled system (3.5) is globally asymptotically stable at the zero equilibrium point. 

Proof: Construct the radially unbounded positive Lyapunov function: 

𝑉2 =
1

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + �̃�2)                                       (3.7) 

Taking the derivative of 𝑉2 along system (3.5) with controller (3.6), it has 



International Core Journal of Engineering Vol.3 No.5 2017                                                  ISSN: 2414-1895 

 

57 

 

𝑉2̇ = 𝑥1𝑥1̇ + 𝑥2𝑥2̇ + 𝑥3𝑥3̇ + �̃��̇̃�                                        = 𝑥1(−𝛿𝑥1 + 𝑥2𝑥3) + 𝑥2(−𝑥2 − 𝑥1𝑥3 +
𝛾𝑥3) + 𝑥3((�̂� − �̃�)(𝑥2 − 𝑥3) − �̂�(𝑥2 − 𝑥3) − 𝛾𝑥2 − 𝑥3) + �̃�𝑥3(𝑥2 − 𝑥3)(3.8) = −𝛿𝑥1

2 − 𝑥2
2 − 𝜎

𝑥3
2 ≤ 0                                               

 

Similarly, one has 

lim
𝑡→∞

(𝛿𝑥1
2 + 𝑥2

2 + 𝑥3
2) = 0 

Then, the controlled system (3.5) is globally asymptotically stable at the zero equilibrium point. 

If the parameter 𝛿 in system (3.1) is uncertain, one can construct the following controlled system. 

{
𝑥1̇ = −(�̂� − 𝛿)𝑥1 + 𝑥2𝑥3 + 𝑢1,

𝑥2̇ = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢2,

𝑥3̇ = 𝜎(𝑥2 − 𝑥3) + 𝑢3,

                                   (3.9) 

where �̂� is the estimate of the uncertain parameter 𝛿, 𝛿 = �̂� − 𝛿. 

Theorem 3.3 If the following adaptive controller is added to system (3.9) 

{

𝑢1 = −
𝛾+𝜎

𝑥1
𝑥2𝑥3 + �̂�𝑥1 − 𝑥1

𝑢2 = 𝑢3 = 0

�̇̂� = �̇� = −𝑥1
2

                                    (3.10) 

the controlled system (3.9) is globally asymptotically stable at the zero equilibrium point. 

Proof: Construct the radially unbounded positive Lyapunov function: 

𝑉3 =
1

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝛿2)                                       (3.11) 

The derivative of 𝑉3, taking into account the model (3.9) and controller (3.10), is found to be 

𝑉3̇ = 𝑥1𝑥1̇ + 𝑥2𝑥2̇ + 𝑥3𝑥3̇ + 𝛿�̇�                                        = 𝑥1(�̂�𝑥1 − 𝛿𝑥1 + 𝑥2𝑥3) −
𝛾+𝜎

𝑥1
𝑥2𝑥3 +

�̂�𝑥1 − 𝑥1 + 𝑥2(−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3) + 𝑥3(𝜎(𝑥2 − 𝑥3)) − 𝛿𝑥1
2(3.12) = −𝑥1

2 − 𝑥2
2 − 𝜎𝑥3

2 ≤ 0            

                                      

Similarly, one has 

lim
𝑡→∞

(𝛿𝑥1
2 + 𝑥2

2 + 𝑥3
2) = 0 

Then, the controlled system (3.9) is globally asymptotically stable at the zero equilibrium point.  

Remark 3.1 Since the controller (3.10) contains the term 
γ+σ

x1
x2x3, the control gain will approach 

1 .if x1 approach zero. Then, controller (3.10) is not a good control input to solve the problem, and 

wewill use two control input to solve it in the next section.x1 

4. Numerical Simulations 

In this section, several examples are proposed to illustrate the theoretical results obtained in the 

preceding sections. A fourth order Runge-Kutta method is used to obtain the simulation results with 

MATLAB software. 

For the BLDCM system (2.1), let δ = 0.875, γ = 55. σ = 4.35 the initial state x(0) = 0, y(0) =2, z(0) 
= 1. 

Single-input: 

Fig.1 shows the state track of system (3.2) with controller (??), Fig.2 shows the convergence estimates 

of the parameters γ, Fig.3 shows the state track of system (3.5) with controller (3.6), Fig.4 shows the 

convergence estimates of the parameters σ, Fig.5 shows the state track of system (3.9) with controller 

(3.10), Fig.6 shows the convergence estimates of the parameters δ. 
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Figure1. the state track of system (3.2) with controller(??) 

 
Figure 2. The convergence estimates of the parameters  

  
Figure 3: the state track of system (3.5) with controller (3.6)

 
Figure 4. The convergence estimates of the parameters σ 
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Figure 5.the state track of system (3.9) with controller (3.10) 

 
 Figure 6. The convergence estimates of parameters δ 

5. Conclusion 

In this paper, the problems of globally asymptotical stability of chaotic brushless DC motors 
(BLDCM) with single input or multiple input is studied respectively. Then, by applying adaptive 

control technology and stability theory, we design seven controllers to achieve the stability of the 

chaotic brushless DC motors, from the numerical simulations we can know that no matter the single-

input or multiple-input, the state trajectory convergence time is very fast, however, the cost of 

multiple-input is higher than the single-input and the difficulty of the controller is greatly reduced. 
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