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Abstract 

The electro-elastic coupling effect of dislocation dipoles in piezoelectric matrix and the 
circular nanoscle inclusion with interface effect was investigated. Using the complex 
potential method of Elasticity, the analytical solution of matrix and nanoscale 
inhomogeneity is obtained firstly, then the stress field of matrix and inclusion, the 
electric displacement field, and the image force acting on the screw dipole center are 
deduced. Numerical calculation shows that the existence of interface effect can attenuate 
attractive force of soft inclusion on dislocation dipole and enhance the rejection of hard 
inclusion on dislocation dipole, illustrating that the interface effect produces rejection 
force on screw dislocation dipole. 
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1. Introduction 

Piezoelectric materials generate electric fields due to mechanical deformation under the action of 

force, and can also generate mechanical deformation under pure electric field. This electromechanical 

coupling effect makes piezoelectric composite materials widely used in engineering, especially in the 

field of intelligent structures that require self bearing capacity, self diagnosis, self adaptability, and 

self repair function. However, during the preparation and use of piezoelectric composite materials, it 

is difficult to avoid micro defects such as inclusions, rigid nuclei, dislocations, cracks, and pores. 

These defects not only appear in the matrix and inclusions, but also on the interface and surface. Their 

existence inevitably affects the various properties of piezoelectric composite materials during service. 

Therefore, establishing a reasonable mechanical model to study the mutual interference mechanism 

between micro defects in piezoelectric composite materials from a microscopic perspective is of great 

theoretical significance and practical value[1-9]. 

Dislocations and dislocation dipoles are common microscopic defects in crystalline materials. 

Dislocation dipoles are composed of two equally sized (Burgers vectors) dislocations with opposite 

directions. The stress field generated by them is much smaller than that generated by a single 

dislocation, making them more likely to occur in materials, and their impact on the material cannot 

be ignored [10, 11]. When studying the interaction mechanism between dislocation dipoles and 

inclusions, the size of inclusions and the boundary conditions of interfaces are crucial. For larger 

inclusions (micrometer scale and above), the interface occupied area is very small compared to the 

size of the inclusion area, and the interface effect can be ignored. However, for very small inclusions 

(such as nanometer scale ), the interface occupied area cannot be ignored compared to the inclusion 
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area. In this case, the interface stress effect must be considered [12-16]. The "surface/interface effect 

model" proposed by Gurtin and Murdoch [15], also known as the interface stress model, is widely 

used in the study of nanomaterials or nanoscale structural mechanics. This model considers the 

interface as a region bonded to an inclusion, with different elastic moduli and constitutive equations 

from the inclusion, and does not consider thickness. The influence of interface effects on the matrix 

and inclusions is achieved by constructing local perturbation boundary conditions based on interface 

stress. Fang [12] studied the elastic interference between screw dislocations and nanocircular 

inclusions containing interfacial stress. Pan [16] investigated the variation of effective elastic modulus 

in piezoelectric materials under interface effects; Xu [10] investigated the electroelastic coupling 

interference effect between a single screw dislocation and a circular nano inclusion containing 

interface effects. The previous research mainly focused on studying individual dislocations, and there 

have been no reports on the interference between dislocation dipoles and nano-inclusions. This article 

establishes a mechanical model for the interference between spiral dislocation dipoles and circular 

nano piezoelectric inclusions containing interface effects. Using the complex potential method of 

elastic mechanics, the stress fields of the matrix, inclusions, and interfaces, as well as the series form 

analytical solutions of the dislocation image force acting at the center of the dislocation dipole, are 

derived. The influence of interface effects, material parameters, and other factors on the dislocation 

image force is discussed through numerical analysis. 

2. Basic Formulas and Problem Description 

2.1 Basic Formulas 

For a transversely isotropic piezoelectric medium with polarization direction along the axis, its 

isotropic plane is set as plane xoy . Under the action of anti-plane loading and in-plane electric field 

at infinity, only anti plane displacement w , stress components xz  and yz , strain components xz  

and yz , as well as electric potential  , electric displacement components xD  and yD , and electric 

field strength xE  and yE are generated. Let the generalized displacement vector is ,
T

j j jw  =  U , 

generalized stress vectors are ,
T

xzj xzj xjD =  Σ  and ,
T

yzj yxzj yjD =  Σ , and generalized strain vectors are 

,
T

xzj xzj xjE =  Y  and ,
T

yzj yzj yjE =  Y , according to the complex potential method in Elasticity, these 

physical quantities can be represented by the complex potential function ( ) ( ) ( ),
T

j wj jz f z f z
 =  f  as 

follows [9-11]: 

 

( )Re z=U f                                  (1) 

 

( )ixz yz z− =Σ Σ MF                               (2) 

 

( )ixz yz z− =Y Y F                                (3) 

 

where ( ) ( )z z=F f , M is the electroelastic modulus matrix, and
44 15

15 11

c e

e d

 
=  

− 
M . 

When taking polar coordinates, Eq. (2) can be written as: 

 

( )ii e z
 − =Σ Σ MF                               (4) 
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2.2 Problem Description 

As shown in Fig. 1, there is a circular nano inclusion (region S+ ) with a radius of R  in the infinite 

piezoelectric medium matrix (region S− ). The interface between the inclusion and the matrix is 

marked with L , and the matrix is subjected to an anti plane force field ( ,xz yz  
) and an in-plane electric 

field ( ,x yD D 
) at infinity. Let the matrix and inclusions be transversely isotropic, with the xoy plane 

as the isotropic plane, and the inclusions extend infinitely in the z  direction. The center of the 

piezoelectric screw dislocation dipole is located at point i
0 0 0( i e )z x y = + =  in the matrix, containing 

two generalized screw dislocations  Tz bbbb ,1 == and 2 ,
T

zb b b b = − = − −  located at points 
i

1 0 ez z d = − and i
2 0 ez z d = + respectively (where is the dipole arm length d2 , and the inclination 

angle   is the angle between the dipole arm and the positive half axis of the x -axis). 

 

 
y  

x

 

-S  

2M  

0  

+S  

1M  
R  

1z

2z 0z

2d


 

 

 

Fig.1 Interference model between a piezoelectric screw dislocation dipole and a circular inclusion 

with interface effect 

 

Assuming the center of the circular inclusion is the origin iz x y= + on the complex plane, 

representing point iR et =  on the interface L ( z R= ). The interface connection conditions for this 

problem can be represented by the generalized displacement vector F and the generalized stress as [9, 

13]: 

 

( ) ( )1 2t t+ −=U U      Lt                            (5) 

 

( ) ( ) ( )- s i
1 2

1
Im er rt t f z

R





− 
 − =  

+
Σ Σ M Lt                       (6) 

 

where 

s s s
44 0 15s

s s
15 11

c τ e

e d

 −
=  

−  

M is the matrix of the electrical elastic modulus for the interface, s
0 is the 

residual stress, 44 15 11c ,e ,d represent the longitudinal shear modulus (under constant electric field), 

piezoelectric constant and dielectric constant (under constant stress field) of piezoelectric materials, 

respectively, R is the radius of nano-inclusions. The subscripts “1” and “2” represent the region 

(inclusion) and (matrix), respectively, while the superscripts  “ + ” and “ −” represent the values taken 

by the function as it approaches the interface from S+ and S− . 
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3. Solving of the Problem  

When the screw dislocation dipole is located in the matrix, singularity analysis shows that the 

complex potential function of the region can be expressed as: 

 

( )2 20

1 2

1 1
( )z z

z z z z

 
= − + + 

− − 
F B Γ F , Sz −                         (7) 

 

where
T1 1

,
2πi 2πi

zb b = =  B b is the dislocation strength for generalized spiral dislocations. 20 ( )zF  is a 

holomorphic function in the region, while Γ  is determined by the stress and potential shift at infinity, 

which can be written as: 

 

1 1
2

i
( )

i

xz yz

x y

x y

i
D D

  

−   −

 

 −
 = − =
 − 

2Γ M Σ Σ M                          (8) 

 

where 

(2) (2)
44 15

2 (2) (2)
15 11

c e

e d

 
=  

−  

M , and the superscrip “ 1− ” indicates matrix inversion.     

Based on the extended Schwartz analytic extension principle, two new analytical functions ( )1* zF  

and ( )2* zF  are defined, and it is noted that there is 2tt R= on z R= , where “—” represents 

conjugation of complex numbers. 

 

( )
2 2

11* 2

R R
z

zz

 
= −  

 
F F     Sz −                          (9) 

 

( )
2 2

22* 2

R R
z

zz

 
= −  

 
F F     Sz +                        (10) 

 

Substituting Eq. (7) into Eq. (10) yields: 

 

( )
2

2* 20** * 2
1 2

1 1
( )

R
z z

z z z z z

 
= − − − +  − − 

F B Γ F     Sz +                 (11) 

 

In the formula, ( )* 2 / 1,2i iz R z i= =  is the holomorphic function within the region S+ . 

Substitute Eq.(1) for differentiation into Eq.(5), then: 

 

 1 2* 2 1*( ) ( ) [ ( ) ( )]t t t t
+ −− = −F F F F    Lt                       (12) 

 

Consider Eqs. (8)-(12), and from the generalized Liouville theorem, it can be obtained that: 

 

1 2*( ) ( ) ( )z z g z− =F F       Sz +                        (13) 
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  2 1*( ) ( ) ( )z z g z− =F F       Sz −                          (14) 

 

On the entire plane, there is: 

 

2

* * 2
1 2 1 2

1 1 1 1
( )

R
g z

z z z z z z z z z

 
= − + − + + 

− − − − 
B Γ Γ                     (15) 

 

Substitute Eq.(2) into Eq. (6), and consider the Eqs.(7)-(11) yields: 

 

( ) ( ) ( ) ( )
s s 2

s s 2i
1 1 2 2* 2* 2 2 2 1 1* 2

1 1
[ ( ) ( ) ( )] [ e ]

R
t t t t t t t t t

R R R R t

+ − − − + = − + − −  
 

M M
M F M F F M F F M F M F M F   (16) 

 

Differentiating Eq.(10) over z  yields: 

 

( ) ( ) ( )
i

4i
2 2*

2e
ez z z

R


 = −F F F                          (17) 

 

Substituting Eq.(17) into equation Eq.(16) yields: 

 

( ) ( ) ( ) ( )
s s s

s
1 1 2 2* 2* 1 1* 2 2 2

1
( ) ( )

t t
t t t t t t

R R R R

+ −
      + + + = + − −     

      

M M M
M F M F F M F M M F F   Lt   (18) 

 

From the generalized Liouville theorem and Eq.(18), it can be obtained that: 

 

( )
s s

1 1 2 2* 2*( ) ( ) ( )
t

z z z z
R R

 
+ + + = 

 

M M
M F M F F h   Sz +                  (19) 

 

( ) ( ) ( ) ( )
s s

1 1* 2 2 2

z
z z z z

R R

 
+ − − = 

 

M M
M F M F F h   Sz −                  (20) 

 

And from Eqs.(8)-(11), it can be obtained that on the entire plane: 

 

( )
( ) ( )

( ) ( )

s s s
s

2 2 2 2 2
1 2 1 2

s s 2 s

2 2* * 2 2 2
* *

1 2
1 2

1 1 2

1 1

z z R
z

R z z z z R R zz z z z

R z z

R R Rz z z z z z z z z

     
 = − − + − + − +    

− −  − −      

 
      − + − − + + −       − −     − −  

M M M
h M B M Γ B M Γ

M M M
M B M Γ B

       (21) 

 

Combining Eq.(11) and Eq.(19) yields: 
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( )
s s s s

1 2 1 1 2[ ] ( ) ( ) ( ) ( )F z zF z z z z z
R R R R

 
 + + + = + + + 

 

M M M M
M M h M g g              (22) 

 

In region S+ , expand ( )1 zF  into Taylor series as: 

 

( ) k
1

k 0

kz a z


=

=F      z R                             (23) 

 

According to Eq. (22), the constants can be obtained as: 

 
1

s

0 1 2 2

1 2

1 1
2a

R z z

−
    

= − + + − −   
     

M
M M M B Γ                       (24) 

 

 

1

s
k 1 2 2 1 1

1 2

1 k 1 1
2

k k
a

R z z

−

+ +

 + 
= − + + −       

M M M M B   k 1                  (25) 

 

Substituting Eq. (23) into Eq. (10) has: 

 

 ( ) ( )2 k 1 k 2
1* k

k 0

z a R z


+ − −

=

= −F   z R                          (26) 

 

Substituting Eq. (26) into Eq. (14) has: 

 
2

2 * * 2
1 2 1 2

1
s 2

1 2 2 2
1 2

1

s 2 2 2
1 2 2 1 1

0 1 2

1 1 1 1
( )

1 1
2

1 k 1 1
2 k k

k k
k

R
z

z z z z z z z z z

R

R z z z

R z
R z z

−

−
+ − −

+ +
=

 
= − + − + + 

− − − − 

    
+ + + − − −   

     

 + 
− + + −       


F B Γ Γ

M
M M M B Γ

M M M M B

   z R            (27) 

 

The generalized stress field expression inside the nano inclusion can be obtained from Eq. (2) and Eq. 

(23), which is: 

 
1

s

1 1 1 1 2 2

1 2

1

s
1 1 2 2 1 1

0 1 2

1 1
i 2

1 k 1 1
2

xz yz

k

k k
k

R z z

z
R z z

−

−

+ +
=

    
− = − + + − −   

     

 + 
− + + −       


M
Σ Σ M M M M B Γ

M M M M M B

       Sz +           (28) 

 

The generalized stress field expression within the matrix can be obtained from Eq. (2) and Eq. (27), 

which is: 
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2

2 2 2 2 2* * 2
1 2 1 2

1
s 2

2 1 2 2 2
1 2

1

s 2 2 2
2 1 2 2 1 1

0 1 2

1 1 1 1
i

1 1
2

1 k 1 1
2

xz yz

k k

k k
k

R

z z z z z z z z z

R

R z z z

R z
R z z

−

−
+ − −

+ +
=

 
− = − + − + + 

− − − − 

    
+ + + − − −   

     

 + 
− + + −       


Σ Σ M B M Γ M Γ

M
M M M M B Γ

M M M M M B

 Sz −             (29) 

 

When there are no dislocations, substituting Eq.(27) into Eq.(4) can obtain the stress field and 

potential shift field at the interface as: 

 

( )
1 1

s s 2
i i i

2 2 2 1 2 2 1 2 2 2
i e e 2e

R
t

R R t

  
 

− −
   

− = = + + + − + +   
   

M M
Σ Σ M F M Γ M M M M M M Γ         (30) 

 

The sum of the image force components acting on the center of the screw dislocation dipole can be 

given by the following equation [17]: 

 

( )2121 yyxxyx FFiFFiFF +−+=−                           (31) 

 

According to the Peach-Koehler formula, the calculation formula for xjF , yjF ( 2,1=j ) is 

( ) 2,1
~~

11 =−=− jiiiFF
j
y

j
x

T
jyjxj ΣΣb . Among them, j

x1

~
Σ and

j
y1

~
Σ represent the stress field of screw 

dislocation at point jz  minus the stress field generated by the corresponding screw dislocation in an 

infinitely uniform matrix. And take the limit value of the stress field for jzz →  to obtain the 

perturbation stress field of the dislocation point. The analytical expressions for dislocation image 

force and image force couple moment can be obtained from Eqs. (27)-(31). 

Without loss of generality, the following assumptions are made during the calculation of the example: 

loading at infinity is zero, namely 0=Γ ; the center of the dislocation dipole is located at a certain 

point on the x -axis ( 0 0z x R=  ), and only the dislocation component force xF  along the x direction 

of the dislocation dipole center in the matrix is discussed, which is dimensionless as 

 
1

0 22x T xF R F
−

= b M b  . 

4. Numerical Analysis 

Assuming the matrix material is piezoelectric ceramic PZT-5H , its stiffness modulus matrix is 
10 2 2

2 2 8

12.6 10 N/m 6.5C/m

6.5C/m 1.51 10 C/Vm−

 
=  

−   

M , the stiffness modulus matrix of the interface is

8

8

7.56N/m 3 10 C/m

3 10 C/m 0

s
−

−

 
=  

  

M , and the piezoelectric screw dislocation is 
T

91.0 10 m 1.0V− =  b .  The 

dielectric constant of nano piezoelectric inclusions and piezoelectric matrix is set as ( ) ( )1 2

11 11d =d . The 

following dimensionless quantities are defined as ( ) ( )1 2

44 44c /cu = , (1) (2)
15 15e /ev = , and s s

15 0e e= , where
s 8
0e 3 10 C/m−=  . 

Fig.2 shows the variation of 0xF with the relative position Rz /0 of the center of the dislocation dipole 

when 2/ = , 1=v , 2/ = , nm10=R , Rd 5= . As shown in the figure, when the interface effect does 

not exist ( 0=sM ), the nano soft inclusion ( 1u ) always attracts dislocation dipoles in the matrix, 
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while the nano hard inclusion ( 1u ) consistently repels dislocation dipoles in the matrix, consistent 

with the conclusions of classical elastic theory. When there is an interface effect ( 0sM ), it weakens 

the attraction of soft inclusions to dislocations and enhances the repulsive force of hard inclusions to 

dislocations, indicating that the interface effect has a repulsive effect on dislocations. 

Fig.3 shows the variation of 0xF  with respect to the relative position /Rd of the dislocation dipole 

center when nm10=R , 1=v , 6/ = , 0 8z R= . As shown in the figure, when the nano-inclusions are 

relatively hard, 0xF  remains positive, indicating that the dislocation dipole is repelled by the hard 

inclusions, and the presence or absence of interface effects has little effect on it. When the nano-

inclusions are relatively soft, 0xF  remains negative, indicating that the dislocation dipole is attracted 

by the soft inclusions. When the interface effect exists, the attraction force 0xF  decreases, indicating 

that the interface effect can weaken the attraction of the soft inclusions to dislocations, which is 

consistent with the analysis results in the above figure. 

    

 

Fig. 2 The variation of 0xF  with the relative position of dipole center Rz /0  

    

0 2 4 6 8
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F
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Fig. 3 The variation of 0xF  with the relative position of dipole center /d R  
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Fig. 4 The variation of 0xF  with dipole angle   of aislocation aipoles 

 

Fig. 4 shows the variation of 0xF  with the dip angle   of the dislocation dipole for different radius R 

when 1u = , 1=v , 40 nmd = , 0 100 nmz = . As shown in the figure, the dislocation image force 0xF  

acting at the center of the dislocation dipole varies periodically with the dipole inclination angle  . 

When (0, / 2)  , as   increases, the attraction force 0xF  decreases; when ( / 2, )   , as   

increased, the attraction force 0xF  increased. When   is constant, the the attraction force 0xF  

increases with the increase of nano-inclusions. 

5. Summary 

This paper investigates the electromechanical coupling effect between a screw dislocation dipole and 

a nanoscale inclusions containing interface stress in piezoelectric materials. Using the complex 

potential function method of elasticity and dislocation theory, the stress fields of the matrix and region, 

as well as the analytical expressions for the image force and image force moment acting on the center 

of the dislocation dipole, were obtained. The influence of relative shear modulus, size of nano-

inclusions, dipole inclination angle and position on the dislocation image force was analyzed using 

examples. The results show that when the nano-inclusions are relatively hard, the dislocation image 

force remains positive, indicating that the dislocation dipole is repelled by the hard inclusions, and 

the interface effect has little effect on it; When the nano-inclusions are relatively soft, the dislocation 

image force remains negative; When the interface effect exists, it weakens the attraction of soft 

inclusions to dislocations and enhances the repulsive force of hard inclusions to dislocations, 

indicating that the interface effect has a repulsive effect on dislocations.   
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